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1. Related Work on Attention Maps

Below, we detail the major types of attention maps meth-
ods. Zhou et al. [10] proposed the Class Activation Maps
(CAM) method. Attention maps are computed as a linear
combination of the feature maps of the last convolutional
layer of a neural network. The network needs to have a
global pooling layer after this last convolutional layer, sub-
sequently followed by a fully connected layer to map to the
outputs. For a given output neuron—e.g. a class in multiclass
classification—the weights of the linear combination of fea-
ture maps are chosen as the weights of the fully connected
layer mapping to that output.

This approach requires a specific architecture (global
pooling and fully connected layers), which limits its ap-
plicability. Grad-CAM [6] also computes attention maps
as linear combination of features maps but computes the
weights differently, using the backpropagation algorithm.
The global pooling layer is not needed anymore, and atten-
tion maps can be computed from any layer in any network
architecture.

The backpropagation algorithm is also used by Si-
monyan et al. [7] to compute attention maps in a completely
different manner. Simonyan et al. [7] propose to compute
attention maps by estimating the gradient of the output with
respect to the input signal, which consequently creates a bi-
jective mapping between the input signal and corresponding
attention map. Springenberg et al. [8] notice that Simonyan
et al.’s method [7] creates interference patterns on the at-
tention maps and that these patterns originate from negative
gradients flowing back in the rectified linear unit (ReLU)
activations. Springenberg et al. [8] propose to modify the
behavior of ReLU during backpropagation for the creation
of an attention map, and set these negative gradients to zero.

This effectively removes the interference patterns. The au-
thors call their method: Guided Backpropagation.

In practice, attention maps often have a higher resolu-
tion with Guided Backpropagation —that of the input signal—
than with Grad-CAM, where the attention maps are often
computed from pooled feature maps. On the same note,
Grad-CAM tends to highlight larger regions of the input,
while Guided Backpropagation focused more on details,
and is sometimes biased toward saliency, e.g. image regions
with high-intensity gradients [1].

Recently, Transformer Networks [9] have been also been
used to compute attention. The attention mechanism is di-
rectly incorporated to the network architecture. While this
makes the interpretation of attention more explicit, it also
limits the type of architecture that can be used, which is in
a way, similar to the model-specific CAM.

The last category of attention map computation meth-
ods is perturbation methods. These methods compute at-
tention maps by applying random perturbations to the input
and observe the changes in the network output. They are
completely model-agnostic. For example, Petsiuk et al. [5]
compute attention maps with masking perturbations. Fong
et al. [3] proposed several other perturbation techniques in-
cluding replacing a region with a constant value, injecting
noise, and blurring the input.

2. Experiments on SVHN

In Table 1, we show results on SVHN dataset [4]. Those
results are not as strong as those on the other datasets (PAS-
CAL, video). We assumed that this is because the difficulty
of SVHN is not related to locating the objects (digits) but
rather differentiating between digits. The location is not a
strong discriminative feature there, and consequently forc-
ing attention to improve localization does not tremendously



Table 1. Classification results (F1) on SVHN. Validation set.

Imgs Per Class | 2 4 8 12 16
ResNet 0.137 0.224 0.324 -
Proposed 0.160 0.247 0.331
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Figure 1. Gain of attention consistency. The x-axis shows the
attention map consistency of the model before attention map con-
sistency fine-tuning. The y-axis shows the gain of attention map
consistency after fine-tuning with the proposed method.

improve classification performance.

3. Statistics of the hospital video dataset

In Table 2, 3, 4, and 5, we show statistics of the hospital
video dataset such as the number of clips (windows) per
class, statistics of the length of each clip, and number of
patients per class.

4. Gain of attention consistency

In Figure 1, we show plot the gain of attention consis-
tency provided by the proposed method on the PASCAL
test set.

S. Details of few-shot learning experiments
(LaSO [2])

The few shot learning baseline is LaSO [2]. This is a
multi-label few shot learning method. LaSO compute oper-
ations on label sets (such as union or intersection) for image
pairs in feature space and consequently creates combina-
tion of labels that are not present in the original training set.
We apply LaSO to our PASCAL dataset, where only the
classes of object presents in the image (not the bounding
boxes) are used as image-level multi-label for training. Few
shots learning experiments presented in the main body use
ResNet architecture with data augmentation. Experiments
settings are the same as for the other PASCAL experiments
and are described in section 4.2 in the main body. The data
splits are also the same as those utilized in the rest of the
article.

6. Discussion on threshold for ATCON

In our experiments, we observed that ATCON is only
beneficial when the training dataset was small. When the
training set size increases, there is no significant difference
between the proposed method and baseline. We believe that
this indicates that when the training dataset is large enough,
more accurate representations are learnt, and forcing the
conception of attention consistency alone is not sufficient
to further improve the accuracy of learnt representations.
More specifically, although the F1 score in Table 2 (main
body) is slightly lower for 16 and 135 images per class, af-
ter statistical testing, these differences were found not sig-
nificant. Note that, for these dataset sizes, the mAPs are the
same for the proposed method and baseline (Table 2, main
body), and that the object detection metrics (Table 3, main
body) are slightly better for the proposed method, although,
again this is not statistically significant. Finding a general
threshold that determine when ATCON is beneficial is chal-
lenging. For PASCAL, that threshold lies between 8 and
12 images per class, while for the video dataset a substan-
tial improvement was still observed for 16 clips per class.
In addition to the number of samples per class, we suppose
that this threshold depends on the difficulty of the dataset,
and the number of classes. We assume that the threshold re-
lates to the number of sample necessary to correctly detect
the object in the image. For new datasets, we suggest using
the method on a series of small training sets and extrapolat-
ing the performance gain for larger training set sizes.



Table 2. Statistics of the full hospital video dataset.
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Label \ Nbr of windows ~ Average length (sec) Median length (sec) Standard Deviation (sec) Total length (sec) Number of patients
Suctioning 45 14.36 10 14.46 646 20
Chewing 15 89.07 45 91.23 1336 12
Rocking 21 54.67 24 71.08 1148 10
Cares 44 88.66 46 170.59 3901 23
Patting 33 38.64 21 40.49 1275 9
All 158 52.57 25 104.47 8306 59

Table 3. Statistics of the training split of the hospital video dataset.

Label Nbr of windows ~ Average length (sec) Median length (sec) Standard Deviation (sec) Total length (sec) Number of patients
suctioning 12 20.92 16 14.92 251 5
chewing 5 147.4 130 98.04 737 4
rocking 6 92.33 56 97.53 554 2
cares 18 122.56 41 255.59 2206 8
patting 10 422 18 56 422 3

Table 4. Statistics of the validation split of the hospital video dataset.

Label Nbr of windows  Average length (sec) Median length (sec) Standard Deviation (sec) Total length (sec) Number of patients
suctioning 18 13.5 11 10.96 243 7
chewing 6 44.33 20 42.13 266 5
rocking 8 45.75 24 53.7 366 4
cares 15 75.33 65 50.24 1130 10
patting 17 3141 17 28.8 534 4

Table 5. Statistics of the testing split of the hospital video dataset.

Label Nbr of windows  Average length (sec) Median length (sec) Standard Deviation (sec) Total length (sec) Number of patients
suctioning 15 10.13 7 15.88 152 8
chewing 4 83.25 44 96.14 333 3
rocking 7 32.57 17 43.74 228 4
cares 11 51.36 34 50.54 565 5
patting 6 53.17 52 32.53 319 2
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