Supplementary Material: A Morphology Focused Diffusion Probabilistic Model for Synthesis of Histopathology Images

Puria Azadi Moghadam *
University of British Columbia
puria.azadi@ubc.ca
Jochen Lennerz
Harvard Medical School
jlennerz@partners.org

Sanne Van Dalen *
Eindhoven University of Technology
s.l.v.dalen@student.tue.nl
Karina C. Martin
BC Cancer Agency
karina.chornenka@vch.ca
Stephen Yip
BC Cancer Agency University of British Columbia
SYip-02@bccancer.bc.ca
h.farahani@ubc.ca

Ali Bashashati
University of British Columbia
ali.bashashati@ubc.ca

[^0]
1. Supplementary Materials

This section provides additional information that we could not include in the paper itself because of space limitations.

1.1. Color Normalization in Detail

Let $I_{s} \in \mathbb{R}^{m \times n_{s}}$ be the source image, and let $I_{t} \in \mathbb{R}^{m \times n_{t}}$ be the target image, where m indicates the number of channels, and n_{s} and n_{t} are the number of pixels in the source and target images, respectively. Also, $H \in \mathbb{R}^{r \times n}$ is the stain density map for r stains. The objective is to normalize the colors of the source images into similar color domain of the target, and find the transferred source image denoted as $I_{s}^{\text {norm }}$. Vahadane et al. [2] showed that for both I_{s} and I_{t}, we can estimate the normalized source patch $\left(I_{s}^{\text {norm }}\right)$ as:

$$
\begin{gathered}
H_{s}^{\text {norm }}(j,::)=\frac{H_{s}(j,:)}{R M\left(H_{s}(j,:)\right)} R M\left(H_{t}(j,:)\right), j=1, \ldots, r, \\
V_{s}^{\text {norm }}=W_{t} H_{s}^{\text {norm }}, \\
I_{s}^{\text {norm }}=I_{0} \exp \left(-V_{s}^{\text {norm }}\right),
\end{gathered}
$$

where $R M$ denotes the robust maximum of a vector.

1.2. Forward Diffusion in Detail

This diffusion process q is a Markov chain and produces latents $x_{1, g_{m}}$ through $x_{T, g_{m}}$ as follows [1]:

$$
\begin{gather*}
q\left(x_{1, g_{m}}, \ldots, x_{T, g_{m}} \mid x_{0, g_{m}}\right)=\prod_{t=1}^{T} q\left(x_{t, g_{m}} \mid x_{t-1}, g_{m}\right), \tag{1}\\
q\left(x_{t, g_{m}} \mid x_{t-1}, g_{m}\right)=\mathscr{N}\left(x_{t, g_{m}} ;\left(\sqrt{1-\beta_{t}}\right) x_{t-1, g_{m}}, \beta_{t} I\right), \tag{2}
\end{gather*}
$$

and by using reparameterization, latent $x_{t, g_{m}}$ can be derived directly from $x_{0, g_{m}}$ as below:

$$
\begin{equation*}
x_{t, g_{m}}=\sqrt{\alpha_{t}} x_{0, g_{m}}+\sqrt{1-\alpha_{t}} \varepsilon, \tag{3}
\end{equation*}
$$

$0<\beta_{1}, \beta_{2}, \ldots, \beta_{T}<1$ are fixed noise scales for each time step t and $\alpha_{t}:=\prod_{s=1}^{t}\left(1-\beta_{s}\right)$. Also, the distribution of the ε is as $\varepsilon \sim \mathscr{N}(0, I)$

1.3. Model Implementation and Training

We trained our model using PyTorch with 1000 diffusion steps using a workstation with an NVIDIA V100 GPU. The rest of the parameters are available at Table 1 .

Parameter	Value
Image size	128
Weighting scheme	P2
Diffusion steps	1000
Maximum Patches	100
Channels	64
Heads	4
Heads channels	64
Attention resolution	$32,16,8$
BigGAN upldownsample	yes
Num Resblocks	2
Learning rate	$1 \mathrm{e}-4$

Table 1: Hyperparameters for diffusion models used in this paper.

1.4. Samples of Real Patches

Table 2 provides the breakdown of the extracted patches based on genomic subtypes and Figure 1 shows samples of real extracted patches after applying the the color normalization module to them.

	IDHC	IDHNC	IDHWT	Total
Patches	12,139	16,975	4,663	33,777
IDH Status	Mutant	Mutant	Wildtype	-
1p19q Status	Codeletion	Retained	-	-

Table 2: Breakdown of extracted patches per subtype

Figure 1: Selection of patches with size $=128 \times 128$ pixels extracted from the WSI. Each row represents a different genotypes.

1.5. Samples of Generated Images by Our Diffusion Probabilistic Model

Figure 2 presents the 10 synthetic images produced by diffusion model, which are significantly close to real images.

Figure 2: Top 10 generated images by our diffusion model.

1.6. Survey Visualization

Figure 3 shows a sample section of the web-form that the pathologists completed. Figure 4is the detailed illustration of each expert opinion about each real or synthetic image. Green and yellow colours depict synthetic and real images, respectively. Also, brown presents a synthetic images that classified as real by pathologists and red corresponds to a real images identified as synthetic. Purple shows medium confidence answers.

Figure 3: The web form for subjective study

References

[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33:6840-6851, 2020.
[2] Abhishek Vahadane, Tingying Peng, Amit Sethi, Shadi Albarqouni, Lichao Wang, Maximilian Baust, Katja Steiger, Anna Melissa Schlitter, Irene Esposito, and Nassir Navab. Structure-preserving color normalization and sparse stain separation for histological images. IEEE Transactions on Medical Imaging, 35(8):1962-1971, 2016.

Image Number	Label
1	Synthetic
2	Synthetic
3	Real
4	Synthetic
5	Real
6	Synthetic
7	Synthetic
8	Synthetic
9	Real
10	Synthetic
11	Real
12	Real
13	Real
14	Synthetic
15	Real
16	Synthetic
17	Synthetic
18	Synthetic
19	Real
20	Real
21	Synthetic
22	Real
23	Synthetic
24	Synthetic
25	Real
26	Real
27	Real
28	Real
29	Real
30	Real
31	Synthetic
32	Real
33	Synthetic
34	Real
35	Synthetic
36	Synthetic
37	Real
38	Synthetic
39	Real
40	Real
41	Synthetic
42	Synthetic
43	Synthetic
44	Real
45	Synthetic
46	Synthetic
47	Real
48	Real
49	Synthetic
50	Synthetic
51	Real
52	Synthetic
53	Real
54	Synthetic
55	Real
56	Real
57	Real
58	Synthetic
59	Real
60	Real
61	Synthetic
62	Real
63	Synthetic
64	Real
65	Real
66	Real
67	Synthetic
68	Synthetic
69	Synthetic
70	Real
71	Real
72	Synthetic
73	Real
74	Real
75	Synthetic
76	Real
77	Synthetic
78	Synthetic
79	Synthetic
80	Synthetic

P1	
Real	High
Real	High
Real	High
Synthetic	Medium
Real	High
Synthetic	High
Real	High
Synthetic	Medium
Real	High
Synthetic	High
Real	High
Synthetic	Medium
Real	High
Real	High
Real	Medium
Real	High
Synthetic	Medium
Real	Medium
Real	High
Real	High
Real	High
Synthetic	Medium
Real	High
Real	High
Synthetic	Medium
Real	High
Real	High
Synthetic	Medium
Real	High
Real	High
Synthetic	Medium
Real	High
Synthetic	Medium
Synthetic	High
Real	High
Synthetic	Medium
Real	High
Real	High
Synthetic	Medium
Real	High
Synthetic	Medium
Real	Medium
Real	High
Real	Medium
Real	High

P2	
Synthetic	High
Real	High
Real	High
Real	Medium
Synthetic	Medium
Synthetic	Medium
Real	Medium
Synthetic	Medium
Synthetic	Medium
Real	Medium
Synthetic	High
Real	High
Synthetic	High
Synthetic	Medium
Real	High
Synthetic	Medium
Real	Medium
Real	Medium
Real	High
Synthetic	High
Synthetic	High
Real	High
Synthetic	High
Synthetic	Medium
Real	Medium
Synthetic	Medium
Real	Medium
Real	Medium
Synthetic	High
Real	Medium
Synthetic	Medium
Real	High
Real	High
Synthetic	Medium
Synthetic	High
Synthetic	High
Synthetic	High
Real	High
Synthetic	Medium
Synthetic	High
Real	Medium
Real	High
Real	High
Real	Medium
Real	High
Real	High
Synthetic	Medium
Real	High
Real	High
Synthetic	High
Real	Medium
Synthetic	High
Synthetic	High
Synthetic	Medium
Real	Medium
Real	Medium
Real	High
Real	High
Synthetic	High
Real	High
Real	Medium
Real	Medium
Synthetic	High
Real	High
Real	High
Real	High
Synthetic	High
Real	High
Synthetic	High
Synthetic	Medium
Synthetic	High
Real	Medium
Real	Medium

Figure 4: Illustration of each pathologist's opinion. Green: synthetic image, yellow: real one. Brown: synthetic images that classified as real by pathologists. Red: real image diagnosed as synthetic image. Purple: medium confidant answers.

[^0]: *Equal Contribution

