
Supplemental Material to:
An Embedding-Dynamic Approach to Self-supervised Learning

Suhong Moon
UC Berkeley

suhong.moon@berkeley.edu

Domas Buracas
UC Berkeley

dominykas@berkeley.edu

Seunghyun Park
Clova AI Research, NAVER Corp

seung.park@navercorp.com

Jinkyu Kim
Korea University

jinkyukim@korea.ac.kr

John Canny
UC Berkeley

canny@berkeley.edu

Content
This supplementary material provides implementation

details (Section 1) including training strategy, architectures,
and image augmentations. We also provide evaluation de-
tails (Section 2) including linear evaluation protocol, semi-
supervised learning setting, k-NN classification, and trans-
fer learning on various downstream tasks. We also report
supplemental experimental results of instance segmentation
on COCO dataset (Section 3). In addition, this supplemen-
tary presents ablation study results. Lastly, we compare our
method with [16] and [25] in detail.

1. Implementation Details
We first provide implementation details of our method.

We would emphasize that our code will be made publicly
available upon publication. In Section 1.1 and , we explain
details of our training strategy and architectures. Next, in
Section 1.3, we explain details of the stochastic image data
augmentation used in our experiment.

1.1. Training Strategy.

We utilize the Layer-wise Adaptive Rate Scaling
(LARS) [28] optimizer that is known to effectively over-
come large-batch training difficulties. We also use the learn-
ing rate scheduler that applies a cosine decay function [19]
without restarts to an optimizer step. As suggested by [11],
we apply a learning rate warm-up for the first 10 epochs
where we start training with a small safe learning rate,
which is slowly increased to the max learning rate linearly.
The max learning rate is base lr× batch size

256 ×K [11].
We set the base learning rate to 0.4 for ImageNet-100, 0.5
for STL-10 dataset and 0.15 for ImageNet datasets. Un-
less otherwise stated, we set the batch size to 512. The
weight decay parameter is set to 1 × 10−5. We exclude
biases and parameters in batch normalization layer follow-

ing BYOL [13]. We train the model for 320 epochs for
ImageNet-100 and STL-10 benchmarks and 300 epochs for
ImageNet with 8 V100 16GB GPUs.

1.2. Architectures

For a fair comparison, we use ResNet-18 [15] as a
backbone network architecture for STL-10 and ImageNet-
100 datasets and ResNet-50 as a backbone for ImageNet
dataset, which are widely experimented with conventional
approaches for the self-supervised representation learning
task. Following BYOL [13], the projection heads (i.e. fθ
and gξ in Figure 2 in the main paper) and the prediction
head of the online network (i.e. hθ) use a 2-layer fully con-
nected network with ReLU [20] as an activation function.
We tune the size of hidden layers and output layers of pro-
jection and prediction heads, when the backbone network
is ResNet-18. We use 512 hidden layer size and 128 out-
put layer size instead of 2048 hidden units and 256 output
size, which are used in BYOL. We apply batch normaliza-
tion layer [17]. Also, we experiment various normalization
layers including weight standardization [21] and layer nor-
malization [1] to show that our method does not suffer from
mode collapse without batch normalization.

1.3. Image Augmentations

We use a stochastic data augmentation operator that is
sampled from the family of augmentations T and results
in a randomly augmented view of any given data exam-
ple. Following SimCLR [4], our data augmentation mod-
ule sequentially applies the following four augmentations:
(1) random cropping followed by resizing back to the origi-
nal size, (2) aspect-ratio changes, (3) random flipping in the
horizontal direction, (4) random color distortion (i.e. jitter
and lighting). Detailed augmentation parameters are in Ta-
ble 1.



Table 1. Image augmentation parameters

Image Augmentation Parameters Values

1. Random Crop Probability 1.0
2. Flip Probability 0.5
3. Color Jittering Probability 0.8
4. Brightness Adjustment Max Intensity 0.4
5. Contrast Adjustment Max Intensity 0.4
6. Saturation Adjustment Max Intensity 0.2
7. Hue Adjustment Max Intensity 0.1
8. Color Dropping Probability 0.2
9. Gaussian Blurring Probability 1.0
10. Solarization Probability 0.2

2. Evaluation Details
In this section, we provide relevant information for eval-

uation of our method.

2.1. Linear Evaluation Protocol

We use the linear evaluation protocol [18], which is the
standard practice to evaluate the quality of the learned im-
age representations. Using the trained encoder as the feature
extractor, we train a linear classifier as a post-hoc manner,
i.e. a simple image classifier given a set of features. Then,
we measure its classification accuracy on the test set as a
proxy of the quality of the learned representations. Note
that the encoder is frozen during the evaluation phase. We
use the following three standard image classification bench-
marks: (1) STL-10 [5], (2) ImageNet-100 [24], and (3) Ima-
geNet [6]. Note that ImageNet-100 contains only 100-class
examples that are randomly sampled from ImageNet

2.2. Semi-Supervised Learning

We also evaluate the semi-supervised learning ability of
our method with subset of ImageNet training set. We fine-
tune ResNet-50 encoder pretrained with our algorithm and
the classifier on top of the encoder using 1% and 10% of
ImageNet. These ImageNet splits can be found from the
official implementation of [4]. We mainly follow the semi-
supervised learning protocol of [13]. We use SGD with
momentum of 0.9 and Nesterov, batch size of 1024. We
use the separate learning rates for the classifier and the en-
coder. For fine-tuning task with 1% ImageNet subset, we
set learning rate of the classifier 2.0 and freeze the encoder.
For fine-tuning task with 10% ImageNet subset, we use the
0.25 as the learning rate of the classifier and 2.5 × 10−4 as
the learning rate of the encoder.

2.3. k-NN Classification

We closely follow the existing work [27, 30] to evaluate
the quality of representations learned by our model. We first
collect representations from training and validation images

with the frozen encoder. Then, we compute the classifica-
tion accuracy of 20/200-nearest neighbor classifier.

2.4. Transferring to Downstream Tasks

To test the transferability of representations trained with
our method on ImageNet, we perform transfer learning to
various datasets: Places205, iNaturalist2018, Pascal VOC,
and COCO.

Image classification. We train the linear classifier layer on
top of the frozen ResNet-50 backbone pretrained with MS-
BReg . For VOC 07, we train a linear support vector ma-
chine (SVM). For other image classification benchmarks,
iNaturalist 2018 and Places 205, we train the linear classi-
fier with SGD with momentum of 0.9 and weight decay of
10−4. The batch size is 256 and learning rate is 0.2 and
we reduce the learning rate by factor of 10 two times with
equally spaced intervals. For Places205, the training epoch
is 28 and for iNaturalist 2018, the training epoch is 84.

Object detection. Following previous works [12, 3, 2, 10],
we finetune the network on VOC07+12 [7] dataset using
Faster-RCNN [22]. We report three metrics of the object
detection, APall, AP75 and AP50. We use Detectron2 [26]
to transfer our model to the object detection task. We set
the initial learning rate 0.02. Other hyperparameters such
as learning rate scheduling, warm-up steps are exactly same
as [14].

Instance Segmentation. For instance segmentation task,
we evaluate our model with COCO dataset. We closely fol-
low [14, 29, 2]. We use Mask R-CNN FPN backbone. The
backbone is initialized with our pretrained ResNet-50 back-
bone. We train the network for 90K iterations with a batch
size of 16. A learning rate is 0.05 and reduced by a factor of
10 after 60K and 80K iterations. We linearly warm up the
learning rate for 50 iterations.

3. Results on COCO Instance Segmentation

We also evaluate the learned representation on COCO
insstance segmentation task. We observe in Table 2 that our
method shows competitive performance with other meth-
ods. Our method is better than BYOL [13] (3rd row), which
is our main baseline. SwAV [3] (5th row) shows similar
performance to ours. Note that this method uses more aug-
mentations than ours.

4. Related Works

In this section, we supplement Section 2. We com-
pare our work with batch repetition method [16], uniformity
loss [25], and BYOL without BN [23] in detail.

Batch Repetition. In the Section 2, we mention batch rep-
etition method [16]. Similar to this method, our multiview



Table 2. Performance comparison for transfer learning on instance
segmentation task on COCO dataset. We use train2017 as
training data and report the box detection AP (APbb) and instance
segmentation AP (APmk) scores on val2017 dataset.

Method APbb APmk

SimCLR [9] 39.7 35.8
MoCo [14] 40.4 36.4
BYOL [13] 41.6 37.2
VICReg [2] 39.4 36.4
SwAV [3] 41.6 37.8
BarlowTwins [29] 40.0 36.7
OBoW [10] 40.8 36.4

Ours (K = 4) 41.8 37.8

Table 3. Evaluating methods with Lalign and Luniform

Method Acc.(%) Alignment Uniformity

BYOL 71.9 0.25 -1.52
BYOL+Luniform 72.1 0.27 -2.95
BYOL+Lb + Ls 72.8 0.26 -2.92

Ours (K = 4) 80.4 0.36 -3.8

centroid loss partially benefits from the fact that simply see-
ing the same image with different augmentations at each it-
eration, stabilizes and accelerates training in self-supervised
settings. However, the main difference between [16] and
multiview centroid loss, is that multiview centroid loss con-
siders the interactions between embeddings of the positive
pairs.

Uniformity of Embeddings. In this section, we report uni-
formity score of MSBReg and other baselines in Table 3.
We train BYOL, BYOL with uniformity loss, BYOL+Lb +
Ls and MSBReg with ImageNet-100 with ResNet-18 back-
bone. Then, we evaluate each model with three metrics:
1) linear classifier accuracy 2) alignment loss and 3) unifor-
mity loss. Here, both alignment loss and uniformity loss are
introduced in [25]. Alignment loss, Lalign is defined as mean
squared error between positive pairs and uniformity loss,
Luniform, is defined as the logarithm of the average pairwise
Gaussian potential between negative pairs. In Table 3, uni-
formity loss improves the performance of BYOL (1st row vs
2nd row), by decreasing uniformity loss. Ours shows lower
uniformity loss, higher alignment loss and the better perfor-
mance than other baselines. This strengthen the argument
of [25] and ours, which argues that the optimal distribution
trained with self-supervised method is uniformly on the em-
bedding manifold.

BYOL without Batch Normalization Layer. The widely
known fact about BYOL [13] is that this method falls into

Table 4. Comparison of the quality of representations between
BYOL [13] and ours on the STL-10 dataset [5]. The Top-1 clas-
sification accuracy is reported with different types of normaliza-
tion techniques: a batch normalization (BN) [17] and a layer norm
(LN) [1]. To see the effect of our proposed Brownian Diffusive
Loss, Lb, we also report scores of BYOL with Lb (4th row).

Method Norm. Layer Batch Size λb Top-1 (%)

BYOL BN 256 0 89.5
Ours BN 256 5× 10−2 91.4

BYOL LN 256 0 10.6
BYOL + our Lb LN 256 5× 10−3 75.3
BYOL LN 1024 0 10.6

Ours LN 256 5× 10−4 80.7
Ours LN 256 5× 10−3 82.3
Ours LN 256 5× 10−2 78.7

the mode collapse [8] without batch normalization layer.
The authors of [13] performed studies that BYOL works
even without BN layer [23]. In this paper, authors showed
that BYOL without BN gets matched performance using
various normalization techniques including weight stan-
dardization [21] or the deliberately handled initialization.
But still, BYOL fails to converge optimal solution with such
deliberately tuned training techniques. In this section, we
show that MSBReg also work with layer normalization [1]
without any other techniques in Table 4.

In Table 4, the top-1 classification accuracy is largely
degraded from 89.5% to 10.6%, i.e. mode collapsed. Ours
with the Brownian diffusive loss Lb was not the case (com-
pare 2nd vs. 6th row). Though we observe a slight degra-
dation in the top-1 classification accuracy, ours sufficiently
avoid collapsed representations. Further, we evaluate the
BYOL with our Brownian diffusive loss to demonstrate its
effectiveness against a mode collapse. We observe that our
Brownian diffusive loss helps avoid collapsed representa-
tions (compare 3rd vs. 4th rows). We also observe that the
quality of representations depends on the strength of the hy-
perparameter λb where we obtain the best performance with
λb = 5 × 10−4. We observe a tension as we see a smaller
or larger λb slightly degrades the quality of representations.

5. Ablation Studies

We perform ablation experiments to study the trade
off between major hyperparameters in MSBReg , λs and
λb. In table 5, our experiment reports the top-1 classifi-
cation accuracy on ImageNet-100. We train ResNet-18
with MSBReg for 300 epochs with various combinations
of K ∈ {2, 4, 8}, λs ∈ {0, 0.002, 0.004, 0.01}, and
λb ∈ {0, 0.25, 0.5, 1.0, 2.0}. Note that the case of K = 2
is the same as BYOL setting. Then, we train the linear
classifier on top of frozen ResNet-18 backbone pretrained
with MSBReg . Our study shows that the classification
accuracy increases until λs=0.004, λb = 0.5 for the cases



of K = 4 and K = 8. Interestingly, both singular value
loss and Brownian loss improve the performance for the
case of BYOL (K = 2).

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[2] Adrien Bardes, Jean Ponce, and Yann LeCun. Vi-
creg: Variance-invariance-covariance regularization for self-
supervised learning. arXiv preprint arXiv:2105.04906, 2021.

[3] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. 2020.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-
chine learning, pages 1597–1607. PMLR, 2020.

[5] Adam Coates, Andrew Ng, and Honglak Lee. An analysis
of single-layer networks in unsupervised feature learning. In
Geoffrey Gordon, David Dunson, and Miroslav Dudı́k, ed-
itors, Proceedings of the Fourteenth International Confer-
ence on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages 215–223,
Fort Lauderdale, FL, USA, 11–13 Apr 2011. JMLR Work-
shop and Conference Proceedings.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[7] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. International Journal
of Computer Vision, 111(1):98–136, Jan. 2015.

[8] Abe Fetterman and Josh Albrecht. Understanding self-
supervised and contrastive learning with bootstrap your own
latent (byol).

[9] Spyros Gidaris, Andrei Bursuc, Nikos Komodakis, Patrick
P’erez, and Matthieu Cord. Learning representations by pre-
dicting bags of visual words. 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
6926–6936, 2020.

[10] Spyros Gidaris, Andrei Bursuc, Gilles Puy, Nikos Ko-
modakis, Matthieu Cord, and Patrick Pérez. Obow: Online
bag-of-visual-words generation for self-supervised learning.
2021 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 6826–6836, 2021.

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large mini-
batch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677, 2017.

[12] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan
Misra. Scaling and benchmarking self-supervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision (ICCV), October
2019.

[13] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
Munos, and Michal Valko. Bootstrap your own latent: A new
approach to self-supervised learning, 2020.

[14] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2020.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015.

[16] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Francis Bach and David Blei, editors, Pro-
ceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning
Research, pages 448–456, Lille, France, 07–09 Jul 2015.
PMLR.

[18] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-
visiting self-supervised visual representation learning, 2019.

[19] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts, 2017.

[20] Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In Icml, 2010.

[21] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan
Yuille. Micro-batch training with batch-channel normaliza-
tion and weight standardization, 2020.

[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In C. Cortes, N. Lawrence, D. Lee, M.
Sugiyama, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 28. Curran Associates,
Inc., 2015.

[23] Pierre H. Richemond, Jean-Bastien Grill, Florent Altché,
Corentin Tallec, Florian Strub, Andrew Brock, Samuel
Smith, Soham De, Razvan Pascanu, Bilal Piot, and Michal
Valko. Byol works even without batch statistics, 2020.

[24] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding, 2020.

[25] Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere, 2020.

[26] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019.

[27] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In Proceedings of the IEEE Conference

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


Table 5. Ablation studies to investigate the trade-off between losses in MSBReg .

K λs λb Acc. (%) K λs λb Acc. (%) K λs λb Acc. (%)

2 0 0 71.9 4 0 0 78.2 8 0 0 79.5
2 0 0.25 72.3 4 0 0.25 79.1 8 0 0.25 80.1
2 0 0.5 72.8 4 0 0.5 79.7 8 0 0.5 80.3
2 0 1.0 72.3 4 0 1.0 79.2 8 0 1.0 80.3
2 0 2.0 71.9 4 0 2.0 79.0 8 0 2.0 80.2
2 0.002 0 72.2 4 0.002 0 78.9 8 0.002 0 79.8
2 0.002 0.25 72.4 4 0.002 0.25 78.8 8 0.002 0.25 80.2
2 0.002 0.5 72.4 4 0.002 0.5 79.1 8 0.002 0.5 80.9
2 0.002 1.0 72.1 4 0.002 1.0 79.2 8 0.002 1.0 81.1
2 0.002 2.0 71.9 4 0.002 2.0 79.2 8 0.002 2.0 80.8
2 0.004 0 72.8 4 0.004 0 79.7 8 0.004 0 80.0
2 0.004 0.25 72.8 4 0.004 0.25 80.2 8 0.004 0.25 80.9
2 0.004 0.5 72.4 4 0.004 0.5 80.4 8 0.004 0.5 81.6
2 0.004 1.0 72.1 4 0.004 1.0 80.1 8 0.004 1.0 81.5
2 0.004 2.0 71.2 4 0.004 2.0 79.9 8 0.004 2.0 81.3
2 0.01 0 71.1 4 0.01 0 79.3 8 0.01 0 79.9
2 0.01 0.25 71.0 4 0.01 0.25 79.4 8 0.01 0.25 81.2
2 0.01 0.5 71.0 4 0.01 0.5 79.2 8 0.01 0.5 81.4
2 0.01 1.0 70.7 4 0.01 1.0 79.2 8 0.01 1.0 81.1
2 0.01 2.0 70.3 4 0.01 2.0 79.0 8 0.01 2.0 79.8

on Computer Vision and Pattern Recognition (CVPR), June
2018.

[28] Yang You, Igor Gitman, and Boris Ginsburg. Large
batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

[29] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and
Stéphane Deny. Barlow twins: Self-supervised learning via
redundancy reduction, 2021.

[30] Chengxu Zhuang, Alex Zhai, and Daniel Yamins. Local ag-
gregation for unsupervised learning of visual embeddings.
2019 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 6001–6011, 2019.


