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Content
This supplementary material provides implementation

details (Section 1) including training strategy, architectures,
and image augmentations. We also provide evaluation de-
tails (Section 2) including linear evaluation protocol, semi-
supervised learning setting, k-NN classification, and trans-
fer learning on various downstream tasks. We also report
supplemental experimental results of instance segmentation
on COCO dataset (Section 3). In addition, this supplemen-
tary presents ablation study results. Lastly, we compare our
method with [16] and [25] in detail.

1. Implementation Details
We first provide implementation details of our method.

We would emphasize that our code will be made publicly
available upon publication. In Section 1.1 and , we explain
details of our training strategy and architectures. Next, in
Section 1.3, we explain details of the stochastic image data
augmentation used in our experiment.

1.1. Training Strategy.

We utilize the Layer-wise Adaptive Rate Scaling
(LARS) [28] optimizer that is known to effectively over-
come large-batch training difficulties. We also use the learn-
ing rate scheduler that applies a cosine decay function [19]
without restarts to an optimizer step. As suggested by [11],
we apply a learning rate warm-up for the first 10 epochs
where we start training with a small safe learning rate,
which is slowly increased to the max learning rate linearly.
The max learning rate is base lr× batch size

256 ×K [11].
We set the base learning rate to 0.4 for ImageNet-100, 0.5
for STL-10 dataset and 0.15 for ImageNet datasets. Un-
less otherwise stated, we set the batch size to 512. The
weight decay parameter is set to 1 × 10−5. We exclude
biases and parameters in batch normalization layer follow-

ing BYOL [13]. We train the model for 320 epochs for
ImageNet-100 and STL-10 benchmarks and 300 epochs for
ImageNet with 8 V100 16GB GPUs.

1.2. Architectures

For a fair comparison, we use ResNet-18 [15] as a
backbone network architecture for STL-10 and ImageNet-
100 datasets and ResNet-50 as a backbone for ImageNet
dataset, which are widely experimented with conventional
approaches for the self-supervised representation learning
task. Following BYOL [13], the projection heads (i.e. fθ
and gξ in Figure 2 in the main paper) and the prediction
head of the online network (i.e. hθ) use a 2-layer fully con-
nected network with ReLU [20] as an activation function.
We tune the size of hidden layers and output layers of pro-
jection and prediction heads, when the backbone network
is ResNet-18. We use 512 hidden layer size and 128 out-
put layer size instead of 2048 hidden units and 256 output
size, which are used in BYOL. We apply batch normaliza-
tion layer [17]. Also, we experiment various normalization
layers including weight standardization [21] and layer nor-
malization [1] to show that our method does not suffer from
mode collapse without batch normalization.

1.3. Image Augmentations

We use a stochastic data augmentation operator that is
sampled from the family of augmentations T and results
in a randomly augmented view of any given data exam-
ple. Following SimCLR [4], our data augmentation mod-
ule sequentially applies the following four augmentations:
(1) random cropping followed by resizing back to the origi-
nal size, (2) aspect-ratio changes, (3) random flipping in the
horizontal direction, (4) random color distortion (i.e. jitter
and lighting). Detailed augmentation parameters are in Ta-
ble 1.



Table 1. Image augmentation parameters

Image Augmentation Parameters Values

1. Random Crop Probability 1.0
2. Flip Probability 0.5
3. Color Jittering Probability 0.8
4. Brightness Adjustment Max Intensity 0.4
5. Contrast Adjustment Max Intensity 0.4
6. Saturation Adjustment Max Intensity 0.2
7. Hue Adjustment Max Intensity 0.1
8. Color Dropping Probability 0.2
9. Gaussian Blurring Probability 1.0
10. Solarization Probability 0.2

2. Evaluation Details
In this section, we provide relevant information for eval-

uation of our method.

2.1. Linear Evaluation Protocol

We use the linear evaluation protocol [18], which is the
standard practice to evaluate the quality of the learned im-
age representations. Using the trained encoder as the feature
extractor, we train a linear classifier as a post-hoc manner,
i.e. a simple image classifier given a set of features. Then,
we measure its classification accuracy on the test set as a
proxy of the quality of the learned representations. Note
that the encoder is frozen during the evaluation phase. We
use the following three standard image classification bench-
marks: (1) STL-10 [5], (2) ImageNet-100 [24], and (3) Ima-
geNet [6]. Note that ImageNet-100 contains only 100-class
examples that are randomly sampled from ImageNet

2.2. Semi-Supervised Learning

We also evaluate the semi-supervised learning ability of
our method with subset of ImageNet training set. We fine-
tune ResNet-50 encoder pretrained with our algorithm and
the classifier on top of the encoder using 1% and 10% of
ImageNet. These ImageNet splits can be found from the
official implementation of [4]. We mainly follow the semi-
supervised learning protocol of [13]. We use SGD with
momentum of 0.9 and Nesterov, batch size of 1024. We
use the separate learning rates for the classifier and the en-
coder. For fine-tuning task with 1% ImageNet subset, we
set learning rate of the classifier 2.0 and freeze the encoder.
For fine-tuning task with 10% ImageNet subset, we use the
0.25 as the learning rate of the classifier and 2.5 × 10−4 as
the learning rate of the encoder.

2.3. k-NN Classification

We closely follow the existing work [27, 30] to evaluate
the quality of representations learned by our model. We first
collect representations from training and validation images

with the frozen encoder. Then, we compute the classifica-
tion accuracy of 20/200-nearest neighbor classifier.

2.4. Transferring to Downstream Tasks

To test the transferability of representations trained with
our method on ImageNet, we perform transfer learning to
various datasets: Places205, iNaturalist2018, Pascal VOC,
and COCO.

Image classification. We train the linear classifier layer on
top of the frozen ResNet-50 backbone pretrained with MS-
BReg . For VOC 07, we train a linear support vector ma-
chine (SVM). For other image classification benchmarks,
iNaturalist 2018 and Places 205, we train the linear classi-
fier with SGD with momentum of 0.9 and weight decay of
10−4. The batch size is 256 and learning rate is 0.2 and
we reduce the learning rate by factor of 10 two times with
equally spaced intervals. For Places205, the training epoch
is 28 and for iNaturalist 2018, the training epoch is 84.

Object detection. Following previous works [12, 3, 2, 10],
we finetune the network on VOC07+12 [7] dataset using
Faster-RCNN [22]. We report three metrics of the object
detection, APall, AP75 and AP50. We use Detectron2 [26]
to transfer our model to the object detection task. We set
the initial learning rate 0.02. Other hyperparameters such
as learning rate scheduling, warm-up steps are exactly same
as [14].

Instance Segmentation. For instance segmentation task,
we evaluate our model with COCO dataset. We closely fol-
low [14, 29, 2]. We use Mask R-CNN FPN backbone. The
backbone is initialized with our pretrained ResNet-50 back-
bone. We train the network for 90K iterations with a batch
size of 16. A learning rate is 0.05 and reduced by a factor of
10 after 60K and 80K iterations. We linearly warm up the
learning rate for 50 iterations.

3. Results on COCO Instance Segmentation

We also evaluate the learned representation on COCO
insstance segmentation task. We observe in Table 2 that our
method shows competitive performance with other meth-
ods. Our method is better than BYOL [13] (3rd row), which
is our main baseline. SwAV [3] (5th row) shows similar
performance to ours. Note that this method uses more aug-
mentations than ours.

4. Related Works

In this section, we supplement Section 2. We com-
pare our work with batch repetition method [16], uniformity
loss [25], and BYOL without BN [23] in detail.

Batch Repetition. In the Section 2, we mention batch rep-
etition method [16]. Similar to this method, our multiview



Table 2. Performance comparison for transfer learning on instance
segmentation task on COCO dataset. We use train2017 as
training data and report the box detection AP (APbb) and instance
segmentation AP (APmk) scores on val2017 dataset.

Method APbb APmk

SimCLR [9] 39.7 35.8
MoCo [14] 40.4 36.4
BYOL [13] 41.6 37.2
VICReg [2] 39.4 36.4
SwAV [3] 41.6 37.8
BarlowTwins [29] 40.0 36.7
OBoW [10] 40.8 36.4

Ours (K = 4) 41.8 37.8

Table 3. Evaluating methods with Lalign and Luniform

Method Acc.(%) Alignment Uniformity

BYOL 71.9 0.25 -1.52
BYOL+Luniform 72.1 0.27 -2.95
BYOL+Lb + Ls 72.8 0.26 -2.92

Ours (K = 4) 80.4 0.36 -3.8

centroid loss partially benefits from the fact that simply see-
ing the same image with different augmentations at each it-
eration, stabilizes and accelerates training in self-supervised
settings. However, the main difference between [16] and
multiview centroid loss, is that multiview centroid loss con-
siders the interactions between embeddings of the positive
pairs.

Uniformity of Embeddings. In this section, we report uni-
formity score of MSBReg and other baselines in Table 3.
We train BYOL, BYOL with uniformity loss, BYOL+Lb +
Ls and MSBReg with ImageNet-100 with ResNet-18 back-
bone. Then, we evaluate each model with three metrics:
1) linear classifier accuracy 2) alignment loss and 3) unifor-
mity loss. Here, both alignment loss and uniformity loss are
introduced in [25]. Alignment loss, Lalign is defined as mean
squared error between positive pairs and uniformity loss,
Luniform, is defined as the logarithm of the average pairwise
Gaussian potential between negative pairs. In Table 3, uni-
formity loss improves the performance of BYOL (1st row vs
2nd row), by decreasing uniformity loss. Ours shows lower
uniformity loss, higher alignment loss and the better perfor-
mance than other baselines. This strengthen the argument
of [25] and ours, which argues that the optimal distribution
trained with self-supervised method is uniformly on the em-
bedding manifold.

BYOL without Batch Normalization Layer. The widely
known fact about BYOL [13] is that this method falls into

Table 4. Comparison of the quality of representations between
BYOL [13] and ours on the STL-10 dataset [5]. The Top-1 clas-
sification accuracy is reported with different types of normaliza-
tion techniques: a batch normalization (BN) [17] and a layer norm
(LN) [1]. To see the effect of our proposed Brownian Diffusive
Loss, Lb, we also report scores of BYOL with Lb (4th row).

Method Norm. Layer Batch Size λb Top-1 (%)

BYOL BN 256 0 89.5
Ours BN 256 5× 10−2 91.4

BYOL LN 256 0 10.6
BYOL + our Lb LN 256 5× 10−3 75.3
BYOL LN 1024 0 10.6

Ours LN 256 5× 10−4 80.7
Ours LN 256 5× 10−3 82.3
Ours LN 256 5× 10−2 78.7

the mode collapse [8] without batch normalization layer.
The authors of [13] performed studies that BYOL works
even without BN layer [23]. In this paper, authors showed
that BYOL without BN gets matched performance using
various normalization techniques including weight stan-
dardization [21] or the deliberately handled initialization.
But still, BYOL fails to converge optimal solution with such
deliberately tuned training techniques. In this section, we
show that MSBReg also work with layer normalization [1]
without any other techniques in Table 4.

In Table 4, the top-1 classification accuracy is largely
degraded from 89.5% to 10.6%, i.e. mode collapsed. Ours
with the Brownian diffusive loss Lb was not the case (com-
pare 2nd vs. 6th row). Though we observe a slight degra-
dation in the top-1 classification accuracy, ours sufficiently
avoid collapsed representations. Further, we evaluate the
BYOL with our Brownian diffusive loss to demonstrate its
effectiveness against a mode collapse. We observe that our
Brownian diffusive loss helps avoid collapsed representa-
tions (compare 3rd vs. 4th rows). We also observe that the
quality of representations depends on the strength of the hy-
perparameter λb where we obtain the best performance with
λb = 5 × 10−4. We observe a tension as we see a smaller
or larger λb slightly degrades the quality of representations.

5. Ablation Studies

We perform ablation experiments to study the trade
off between major hyperparameters in MSBReg , λs and
λb. In table 5, our experiment reports the top-1 classifi-
cation accuracy on ImageNet-100. We train ResNet-18
with MSBReg for 300 epochs with various combinations
of K ∈ {2, 4, 8}, λs ∈ {0, 0.002, 0.004, 0.01}, and
λb ∈ {0, 0.25, 0.5, 1.0, 2.0}. Note that the case of K = 2
is the same as BYOL setting. Then, we train the linear
classifier on top of frozen ResNet-18 backbone pretrained
with MSBReg . Our study shows that the classification
accuracy increases until λs=0.004, λb = 0.5 for the cases



of K = 4 and K = 8. Interestingly, both singular value
loss and Brownian loss improve the performance for the
case of BYOL (K = 2).
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