
Supplementary Materials for

ImPosing: Implicit Pose Encoding for Efficient

Visual Localization

This document presents further analysis on our method. We present additional ablation
studies, latent space visualization, results of the attached video and reproducibility details. We
invite readers to view the supplementary video where localization results are shown on a wide
range of scenarios.

1 Ablation study on the pose encoder capacity

All experiments in the main paper report results with 4 layers in the pose encoder MLP network.
We evaluate the localization results with different pose encoder capacity on Neighborhood and
Countryside scenes from the 4seasons dataset[2].
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Figure 1: Localization accuracy depending on pose encoder capacity

Surprisingly, we observe that MLPs with a single hidden layer perform better on both scenes.
The reason is not very clear: more capacity should not degrade performance except in case of
overfitting, which is not the case here because the training loss is lower for smaller models as
well. It might be that bigger MLPs just take more time to converge, we stopped the experiment
after 250 epochs.

2 Ablation study on the similarity score

We tried to alternatives to cosine similarity for computing the score between image and camera
pose latent vectors. A first alternative is based on L2 distance between the image and map
signatures:

s(I, p) = 1− ∥fI(I)− fM (p)∥2 11−∥fI(I)−fM (p)∥2>0 (1)

Then, we also tried to learn this step with a 2 layers MLP, which takes fI(I) − fM (p) as
input, uses a ReLU activation in the hidden layer and outputs a score through the sigmoid acti-
vation. These solutions are compared on the Neighborhood scene from the 4seasons dataset[2]
on figure 2. These scores are supervised with the target scores described in section 3.2 on the
main paper.

The ablation confirms that cosine similarity performs better than other alternatives to com-
pute the score between image-pose pairs.
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Figure 2: Localization accuracy depending on similarity score computation. CS
stands for cosine similarity, L2 for the distance-based similarity and MLP for the learned score
computation

3 Supplementary video

The attached video file shows sequential qualitative results of single scenes ImPosing models
(corresponding to quantitative results of tables 1 and 2 in the main paper) on Daoxiang Lake [3]
and 4Seasons datasets [2].

The input image is displayed on the top left corner. The right part shows the current
predicted trajectory in red, ground truth poses in green and training trajectories in gray. The
bottom left corner displays the 256 best candidates selected for pose averaging in red, the
predicted pose in black and the groundtruth pose in green. Finally, the last plot shows the
score of all candidates in the entire map from transparent (s = 0) to red (s = 1).

Scenes are displayed in the following order : Daoxiang Lake (00:00 to 01:03), Neighborhood
(01:04 to 02:09), Office Loop (02:10 to 02:40), Business campus (02:41 to 03:38), City Loop
(03:39 to 03:59), Countryside (04:00 to 04:44), Old Town (04:45 to 05:00).

These video samples show clearly advantages and limitations of our method:

• Coarse localization is correct most of the time, even in large maps with repetitive and
featureless environments (see figure 3).

• In ambiguous scenarios, our method provides a multimodal distribution of scores in first
iterations and then solves the ambiguity in further steps (see figure 4).

• Sequences of predictions are not temporally smooth, because each frame is treated inde-
pendently in this experiment. In practice, this can be solved by filtering with a motion
model, similar to [1].

• Precise pose estimation is sometimes inaccurate but sufficient to provide a lane level
localization for navigation of autonomous vehicles.

It should also be noted that experiments on 4seasons dataset are extreme scenarios where
the quantity of available data is small w.r.t. to the challenges introduced by weather conditions.

4 Latent space visualization

We attempt to visualize the structure of the latent space learned by ImPosing. We compute
the latent vector of all reference poses of the Daoxiang Lake map. Then we compute a PCA of
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Figure 3: Featureless environments and varying weather conditions. Test is per-
formed on the image on the right, while the network has been trained with 3 recordings with
different lightning conditions. Our method is able to provide a coarse localization in these sce-
narios, where as image retrieval and pose regression competitors fail.

Figure 4: Multimodal score distribution in ambiguous cases. Many road areas present
similar structure and appearance, introducing ambiguities in the localization task. In this
scenario from the City Loop scene, the model outputs high scores for areas depicted in left and
right images, which are very far one from each other. By refining the estimate in further steps,
the model is able to solve this ambiguity in most cases.

the 256 dimensional vectors and display it on the map in figure 5. We observe that our pose
encoder learns a smooth representation of the map, where close representations share similar
visual content.

Figure 5: Latent space visualization. Training poses, colored by the 3 principal components
of map descriptors. Poses with similar colors are close in the latent space. Opposite ways of
the same road are represented by dissimilar representations. Best viewed in color

5 Datasets preparation

This section contains dataset splits used in our experiments to ensure reproducibility. To
the best of our knowledge, 4Seasons [2] and Daoxiang Lake datasets [3] had not been used
previously to evaluate direct learning-based methods. After preparing all the absolute poses of
a map, we normalize the positions between -0.5 and 0.5, such that the networks converge faster
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in kilometers scale maps.

5.1 Oxford RobotCar dataset

The dataset can be downloaded here. We replicate experiments from previous methods using
undistorted front camera images:

Oxford Loop Oxford Full

Training set 2014-06-26-09-24-58 2014-11-28-12-07-13
2014-06-23-15-41-25 2014-12-02-15-30-08

Test set 2014-06-26-08-53-56 2014-12-09-13-21-02
2014-06-23-15-36-04

5.2 Daoxiang Lake dataset

The dataset can be downloaded here. Vehicles are equipped with multiple sensors but we only
use the front cameras images with associated vehicle poses. We don’t use the train/test split
provided by the dataset because the test set is not an entire held out sequence (images from
the same sequence has been observed during training) and then is not a realistic test scenario.

Daoxiang Lake dataset

20191216123346
20191130112819
20191025104732

Training set 20191021162130
20191014142530
20190924124848
20190918143332

Test set 20191225153609

5.3 4seasons dataset

The dataset can be downloaded here. Absolute poses are generated using available Python
tools. We use keyframes from the left camera only.

Neighborhood Office Loop Countryside Bus. campus City Loop Old Town

Train 2020-03-26 13-32-55 2020-03-24 17-36-22 2020-04-07 11-33-45 2020-10-08 09-30-57 2020-12-22 11-33-15 2020-10-08 11-53-41
2020-10-07 14-47-515 2020-03-24 17-45-31 2020-06-12 11-26-43 2021-01-07 13-12-23 2021-01-07 14-36-17 2021-01-07 10-49-45
2020-10-07 14-53-52 2020-04-07 10-20-32 2021-01-07 13-30-07 2021-05-10 21-32-00
2020-12-22 11-54-24 2020-06-12 10-10-57
2021-02-25 13-25-15 2021-01-07 12-04-03
2021-05-10 18-02-12

Test 2021-05-10 18-32-32 2021-02-25 13-51-57 2020-10-08 09-57-28 2021-02-25 14-16-43 2021-02-25 11-09-49 2021-02-25 12-34-08
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