
1. Supplementary Material

1.1. Transformation Synchronisation for VO

For the task of visual odometry, we seek to obtain a tra-
jectory of absolute poses for a driving sequence, from a
collection of relative poses. While an obvious way of do-
ing so is applying relative pose between consecutive frames
and chaining them together, this is highly inaccurate due to
compounding error or individual outliers.

As such, we exploit that our network estimates relative
pose between arbitrary overlapping pairs, due to the na-
ture of road planes capturing a significant portion of im-
ages in a driving sequence, unlike many self-supervised
methods which are limited to adjacent images. However,
our method involves estimating camera-relative pose (from
ground-relative predictions) between each image in a se-
quence and the following five images temporally, providing
a collection of camera-relative poses at varying distances.
Here we summarise a form of transformation synchronisa-
tion, the task of optimising absolute pose from a set of rela-
tive poses, in the presence of noise and incomplete data.

In particular, we employ the SE(3) spectral motion syn-
cronisation method proposed by Arrigoni et al. [4], but we
summarise these details here. In general, we form our col-
lection of camera-relative poses for n cameras into:
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Given our chosen frame separation offset of zero to four,
our relative poses occupy the five blocks of Mij above and
below the main diagonal of X, with the remaining entries
unoccupied. The situation for missing relative poses can be
written as L = ((D � A) ⌦ 14⇥4) � X, where A and D
is the degree and adjacency matrix of X, 14⇥4 is a matrix
composed of ones, and ⌦ and � denote the Kronecker and
Hadamard products respectively [4]. We note that U is a
basis for the null-space of L. We have that the optimisation
problem for absolute poses solves:
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where m denote eigenvalues for associated eigenvectors of
X, and F is the Frobenius norm. That is, least-squares
is used to solve bLU = 0. As illustrated by Arrigoni
et al. [4], outliers are tackled with Iteratively Reweighted
Least Squares. We write the resulting absolute poses as
bRi = [bR1, bR2, ..., bRm] and bti = [btT1 ,btT2 , ...,btTm].

Figure 1. Optical flow field colour scheme. Pure white indicates
zero pixel displacement.

1.2. Qualitative Performance Videos

Please see the video1 we have made available for the
qualitative performance of our approach on sequence 09 of
the KITTI VO benchmark. The bottom two images show
the input pair to our network, and the top image is the
composition of the middle image warped into the perspec-
tive of the bottom with our pose estimation. This result
was obtained using the HEM Train+Test method where we
have fine-tuned our model with the Homography Estima-
tion Module and utilised it at inference time to boost perfor-
mance. Our method performs very competitively with com-
parable methods, while only requiring to estimate 9 pose
parameters, avoiding the need to estimate tens of thousands
of dense depth or optical flow parameters. To the best of our
knowledge, we are the first to leverage the geometry of the

road towards relative pose estimation and visual odometry.
We also provide another video2 for the same conditions,

except we have increased the frame separation from 5 to
10, which is a significantly larger separation in pose. De-
spite the network not being trained for this much larger
frame separation (we trained for upto 5 frames between in-
put images), we can still obtain good relative pose estima-
tion on large segments of road, with dips in performance
occurring where the road planarity assumption or appear-
ance becomes challenging. Most comparable approaches
for monocular self-supervised relative pose have so far been

highly restricted to temporally close frame-to-frame predic-

tions. Our approach leverages local geometry roads with a
more general parameterisation which allows for high flexi-
bility in the pose between both cameras.

In future work, we plan to investigate further how far we
can take this flexibility and whether we can apply a more
complex geometric model to assist pose estimation. Fur-
ther, we plan to train on data where the camera pairs are in
unusual relative positions (e.g. two cameras facing towards
each other, at opposite ends of a junction), and whether this
could facilitate more unusual applications, such as pose es-
timation between two different vehicles.

1.3. Additional Qualitative Results

In Figures 2 and 3 we show additional visual results for
the pre-training perceptual loss stage. In the last example

1https://youtu.be/VrLbDH8LTFc (accessed 30/08/22)
2https://youtu.be/DtA6ll8NtSg (accessed 30/08/22)



for Fig. 2, accuracy is likely reduced due to a vehicle in
reverse. Preceding examples show that our method is of-
ten able to outperform the pseudo ground truth, where we
did not have knowledge of the camera-to-road distance and
orientation, and thus assumed the calibrated values.

In Fig. 3 we show further strengths and limitations of
our initial phase of training - these are perspective warp
compositions for sequences 13, 15 and 16 (ground truth is
unavailable for these sequences), where we show composi-
tions at two sequential and close time frames in a driving
video. Example one shows that our initial phase is able to
predict overall relative pose accurately, despite little road
being present in one of the image pairs (this example in
Fig. 4 is for the second right-hand corner from the top-left,
for sequence 13). Hence, we are able to handle cornering
and outlying examples approximately in preparation for the
refinement stage of our method. Example two and three il-
lustrate cases where our primary assumption, that the road
is locally planar, is challenged by quick changes in road gra-
dient (e.g. speed bumps or cresting hills). For examples at
either side of these outliers, our method performs well and
gross trajectories appear robust in these regions (see Fig. 4
and KITTI sequence 13 for these examples). Example four
illustrates a fail case for the initial phase. This could be
due to mismatching from similar repetitive features such as
lines, faster speeds and dynamic shadows from trees.

We observe that our initial phase of training can struggle
on faster parts of the road. The KITTI visual odometry se-
quences are somewhat biased towards slower urban speeds.
The network independent modeling we achieve from our
homography estimation module is advantageous for tack-
ling such bias. For the next examples we illustrate that ini-
tial training is robust in the presence of dynamic vehicles,
narrow roads and cluttered scenes.

1.4. Localised Trajectory Evaluation

The trajectories in our main paper are computed over en-
tire sequences. In practice, visual odometry will drift sig-
nificantly over long sequences and therefore in Fig. 4 we
provide evaluation over smaller sections of road (approx-
imately 200 frames each) for our pre-training phase. We
note that for sequences 11, 12, 13, 14 and 15, the ground
truth is taken from the KITTI visual odometry benchmark.
Evaluating over sequences 03, 09, 10, 11, 12, 13, 14 and 15
respectively, we note that overall our method performs very
well on these smaller sub-sections.

1.5. Segmentation and Optical Flow Performance

In Figs. 5, 6 and 7 we show the performance of the se-
mantic segmentation and FlowNet2 on the visual output of
our initial phase of training. On the left column we illus-
trate the input (Ii!j , Ij) to the optical flow and on the right
column we show the segmented optical flow results for the

road-plane region. Fig. 1 illustrates the optical flow vector
field colour scheme.

We note that the flow in the road region is largely coher-
ent. In Fig. 6 we show in the first two examples where the
optical flow is focused on regions with dynamic shadows.
Shadows from moving vehicles will not be correctly cross-
projected and represents a limitation in our modeling. How-
ever, our network is still able to produce close alignments
in the presence of such noise and we suggest that automatic
identification of features such as dynamic shadows could
be a useful side-affect of our method. Additionally, we note
that we generally see more misalignment in the background
road-plane, which is reflected in many of the optical flow vi-
sualisations. Overall, the segmented optical flow performs
very well on our predicted compositions, regardless of the
shape of the warps or the content of the images, thus our
refinement stage is not heavily limited by the optical flow
and segmentation methods which we chose to utilise.

1.6. Architecture and Training Details

We refer to the network components in Fig. 1 (the fea-
ture extraction, matching and regression blocks). Using a
geometric matching architecture by Rocco et al. [25] we es-
timate ground-relative pose from overlapping image-pairs.
For the feature extraction network we used ResNet101 to
estimate feature maps for each of the input views sepa-
rately. Subsequently L2-normalisation is performed across
the feature channel dimension. The matching component
calculates similarity scores between both feature maps to
form a correlation volume, which is followed by ReLU and
L2-normalisation. The regression stage takes these putative
matches to regress our ground-relative pose parameters, and
is constructed by two successtive 2D convolutional layers
(with batch nornalisation and ReLU). Three fully connected
layers compute our nine ground-plane pose parameters.

The regression network is initialised with default values,
and feature extraction parts use ImageNet weights initially.
Our optimiser used SGD with a learning rate of 10�4 and
a batch size of 16. The weights of the pretrained VGG-
16 network are frozen. For the second phase of fine-tuning
with LHEM we also use priors to resolve scale ambiguity
but only utilise this for the height of camera i.

For the network input we used 2402 resolution and in
Eqn. (8) for scales s = 1, 2 we used 1202, 2402 respectively.
Most pose estimators concatenate input images channel-
wise but we put them separately into the feature extraction
backbones in a siamese fashion, and fusing of feature maps
only occurs in the correlation volume. For convolution lay-
ers in the regression component we use kernel sizes of 7
and 5, with 128 and 64 output channels respectively. Ex-
cluding the last output dimension, we used a size of 5000
for the fully connected layers’ input and output feature di-
mensions.



Pseudo ground truth Ours

Figure 2. Further KITTI qualittative results for our pre-training phase. Images are a composition of one network input with its counterpart
warped with the estimated relative pose. For pseudo ground truth we assume that the road plane is orientated as per the default calibrated
camera values. Overall we show accurate results for subsequent refinement, even in the presence of cluttered scenes and sharp motions.



tn tn+x

Figure 3. We illustrate further compositions for temporally close image-pairs n and n+ x with inference on our initial pre-training phase
model. Each image is composed of a source image with its warped counterpart, and the grountruth for these images are unavailable as
we use the KITTI visual odometry test set. Example one illustrates a cornering example where little road is captured in the initial pair,
yet approximate motion is retained, and useful for our refinement stage. Example two and three show outlying examples where our local
planarity assumption is challenged by sharper transitions between planes. Example four shows a limitation where performance is lower
due to higher speeds (see text for further discussion). The final examples illustrate good overall performance in various road and motion
conditions, such as cluttered scenes and cornering.
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Figure 4. We evaluate our pre-trained model for trajectory on short-subsections (200 frames) for sequences 03, 09, 10, 11, 12, 13, 14 and
15 respectively. We note that we perform particularly well on the challenging sequence 13 where local planarity is challenged significantly.



Predicted Composition Segmented Optical Flow

Figure 5. Pre-training performance with optical flow and segmentation accuracy. Left: composition of one network input with the warped
counterpart based on the pre-training phase relative pose prediction. Right: accuracy of the segmented optical flow on these predicted
initial compositions. Overall the segmented optical flow performs very well on compositions of all shapes, sizes and content.



Predicted Composition Segmented Optical Flow

Figure 6. Pre-training performance with optical flow and segmentation accuracy. Left: composition of one network input with the warped
counterpart based on the pre-training phase relative pose prediction. Right: accuracy of the segmented optical flow on these predicted
initial compositions. Overall the segmented optical flow performs very well on compositions of all shapes, sizes and content. We note
first two examples here where dynamic shadows from vehicles cause error in our warped alignment, which is a limitation of our current
approach.



Predicted Composition Segmented Optical Flow

Figure 7. Pre-training performance with optical flow and segmentation accuracy. Left: composition of one network input with the warped
counterpart based on the pre-training phase relative pose prediction. Right: accuracy of the segmented optical flow on these predicted
initial compositions. Overall the segmented optical flow performs very well on compositions of all shapes, sizes and content.


