
Supplementary Material:
Generative Range Imaging for Learning Scene Priors of 3D LiDAR Data

Kazuto Nakashima1 Yumi Iwashita2 Ryo Kurazume1
1Kyushu University, Fukuoka, Japan

2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
k nakashima@irvs.ait.kyushu-u.ac.jp yumi.iwashita@jpl.nasa.gov kurazume@ait.kyushu-u.ac.jp

1. Overview

This supplementary material summarizes implementa-
tion details of our model architectures and experiments in
Section 2, detailed analysis of evaluation metrics in Sec-
tion 3, generated examples of our method and baselines in
Section 4, and Sim2Real semantic segmentation results in
Section 5.

2. Implementation details

2.1. Models

Fig. 1 shows an overview of our proposed GAN frame-
work. We design the generator network based on INR-
GAN [16], which was proposed to generate natural images
in coordinate-based representation.

Generator. The generator is composed of a mapping net-
work and synthesis blocks as shown in Fig. 1a. The map-
ping network transforms the latent space z ∼ N(0, I)
into another representation, style space w, which modu-
lates the weights of the synthesis blocks Ω. The synthesis
blocks represent the function which returns inverse depth
xd and ray-drop probability xn given the specific angles
Φ = (θ, ϕ). The outputs xd and xn are then converted
to the final LiDAR image xG through the lossy measure-
ment model. Each synthesis block encodes the angular in-
puts to high-dimensional space to represent spatial bias us-
ing Fourier features [17]. Note that all operations in synthe-
sis blocks are pixel-independent while the set of angles Φ is
dowmsampled hierarchically to perform with a reasonable
computational cost as proposed in INR-GAN.

Discriminator. For the discriminator in Fig. 1c, we use the
same setup of DUSty [11] while replace the backbone with
StyleGAN2 [10]. We applied the separable blur filter [8]
to the discriminator inputs and modify all the kernels with
circular padding.

2.2. Training

We employed the adaptive discriminator augmentation
(ADA) [9] for all the image-based methods: vanilla GAN,
DUSty, and ours. The augmentation basically followed
the original pipeline by Karras et al. [9], but disabled the
steps of rotation and horizontal scaling that break the cir-
cular structure of range images. We also modified the inte-
ger/fractional translation into circulating behavior. We be-
lieve that it is required to explore the optimal augmentation
set for LiDAR range images, while the tuning remains for
future work.

As the adversarial objective, we employed the non-
saturating loss with a gradient penalty [10]. The penalty
coefficient was set to 1. All parameters were updated by
Adam optimizer for 25M iterations with a learning rate of
0.002 and a batch size of 48. Training were performed on
three NVIDIA RTX 3090 GPUs.

2.3. Computational cost of EMD

Earth mover’s distance (EMD) is one of the metrics mea-
suring the error between point clouds. Compared to the
other metrics such as chamfer distance, EMD reflects the
local details and the density distribution and is popular for
the assessment of point clouds. However, it is known that
computing EMD has an o(N3) complexity where N is the
number of points in 3D point clouds [12]. This is problem-
atic for our case using LiDAR point clouds, for instance, in
training point-based models such as l-WGAN [1] and com-
puting the standard evaluation metrics such as COV, MMD,
and 1-NNA [20]. In Fig. 2, we compute a pairwise distance
of M = 10, 000 sets of N points, where N ranges from
29 to 213 with a batch size of 256, and show the computa-
tion time as a function of the number of points. Similar to
Nakashima et al. [11], we reduce the number of points to
conventional 2048 by farthest point sampling in conducting
experiments with point-based methods and evaluating the
point-based metrics.
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Figure 1: Building blocks of our proposed GAN framework.
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Figure 2: EMD computation time as a function of the num-
ber of points. The conventional number of point cloud tasks
is 2048 (dotted line), while our task uses 64×512 = 32, 768
points in full setting.

2.4. Inference

For the inference application, we use the style code w
instead of the latent code z to gain reconstruction fidelity as
demonstrated in the related studies [10, 16, 2, 9, 14]. We
optimize the style code w for 500 iterations in the first step
(GAN inversion) and then optimize the generator weights
Ω for another 500 iterations for the second step (pivotal
tuning). We empirically set the learning rate for 0.05 and
0.0005 for the first and second steps, respectively.

3. Sanity check of evaluation metrics
For evaluating GANs, we used two types of distribu-

tional metrics on the PointNet representation: Fréchet dis-
tance [15] (named FPD for point clouds), squared maxi-
mum mean discrepancy (squared MMD) [3]. This section

aims to verify if the metrics can be used for evaluating Li-
DAR point clouds, since the metrics have been designed
for other domains. For instance, FPD [15] has been pro-
posed for evaluating ShepeNet [5] generation task where
each sample forms small-scale point clouds uniformly sam-
pled from CAD objects. Squared MMD [3] was used to ex-
tend Fréchet Inception distance (FID) [7] that is the standard
metrics for an image generation task. In the image domain,
the metrics are known as Kernel Inception distance (KID) in
tribute to the Inception feature extractor. For the backbone
of the feature extractor, we used the off-the-shelf Point-
Net [13] provided by Shu et al. [15]. The PointNet back-
bone1 is pre-trained on the ShapeNet dataset and used by
the original FPD [15]. To verify if the score is derived from
learned features or architecture bias, we compute the met-
rics using two PointNet encoders with pre-trained weights
and random weights. All metrics are computed between
clean and disturbed sets of KITTI point clouds. In Fig. 3, we
provide the results under six types of disturbances; (a) ad-
ditive Gaussian noises, (b) drop-in Gaussian noises, (c) in-
flating coordinates, (d) yaw rotation, and (e,f) translation in
x/y directions. From the results, we can see that both met-
rics reflect the distributional error if using the pre-trained
PointNet. We can also see that the metrics sensitive to the
translation changes in Fig. 3c–f. Although there are scale
gaps depending on the type of disturbance, the results are
roughly similar to the sanity check of FID [7]. Therefore,
we concluded that the two metrics can be used to evaluate
the generative models on LiDAR point clouds.

4. Generated examples
In Fig. 4, we provide uncurated sets of real and generated

samples from image-based methods including ours. Fig. 5

1https://github.com/seowok/TreeGAN
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(a) Additive Gaussian noises with a coefficient λ (b) Drop-in Gaussian noises for λ× 100 (%) of points
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(c) Inflating coordinates with a multiplicative factor λ (d) Clockwise yaw rotation with an angle λ (◦)

A B C D E

0.00 0.05 0.10 0.15 0.20
Disturbance factor 

0

200

400

600

800

A B
C

D

E
Fréchet distance (FPD)
Pretrained
Random

0.00 0.05 0.10 0.15 0.20
Disturbance factor 

0

50

100

150

A B
C

D

E
Squared MMD

Pretrained
Random

A B C D E

0.00 0.05 0.10 0.15 0.20
Disturbance factor 

0

500

1000

A B
C

D

E
Fréchet distance (FPD)

Pretrained
Random

0.00 0.05 0.10 0.15 0.20
Disturbance factor 

0

50

100

150

A B
C

D

E
Squared MMD

Pretrained
Random

(e) Translation in x direction by λ (f) Translation in y direction by λ

Figure 3: Disturbance sensitivity of four metrics: FPD [15] (Fréchet distance for point clouds) and squared maximum mean
discrepancy (squared MMD) [3]. We applied six types of disturbances to the KITTI point clouds with various strength (see
A–E) and computed the metrics with the clean original point clouds. All point clouds were encoded by PointNet [13] with
pre-trained or random weights.
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Figure 4: Qualitative comparison of uncurated sets of generated samples in the image format (top) and the corresponding
surface normal maps (bottom). The surface normal maps are computed from projected Cartesian points.
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Figure 5: Qualitative comparison between DUSty [11] and
ours. From top to bottom: generated point clouds, the final
inverse depth maps xG, the complete depth maps xd, and
the ray-drop probability maps xn.
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Figure 6: Qualitative comparison in bird’s eye views of real
and generated point clouds.

compares the results between ours and the most closely re-
lated work, DUSty [11]. A close-up comparison shows
that baseline methods include checkerboard artifacts and
our method succeeded in expressing the smooth road sur-
face. In Fig. 6, we provide uncurated sets of real and gen-
erated samples from point-based methods and ours. Our
method is superior in point density distribution and edges.
In Fig. 7, we show reconstruction examples by our auto-
decoding method. From the real data via the lossy mea-
surement, our model produced the smooth shapes and the
reasonable ray-drop probability maps. For instance, the ray-
drop probabilities have uncertainty on the object edges.

5. Sim2Real semantic segmentation

In Fig. 8, we show Sim2Real segmentation results on
KITTI-frontal [19]. All models are trained on GTA-LiDAR
while the ray-drop priors are different. We can see that our
method (config-E) greatly improved the false negative re-
gions of car classes.
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