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A. Training Details
In this section, we provide more details about our imple-

mentation and a full list of the hyperparameters for repro-
ducibility.

A.1. Architecture

We build our system on top of (DINO)’s [9] github im-
plementation. We use the small Vision Transformer model
variant (ViT-S/16) in all our experiments (unless otherwise
stated) as it provides the best trade-off between throughput
and accuracy and has comparable number of parameters to
the baselines with which we compare our method. How-
ever, our implementation also supports the larger model
variants which are evaluated in [9] (e.g. ViT-S/8 , ViT-B/16,
and ViT-B/8).

On top of the ViT-S backbone [CLS] token output rep-
resentation z∗ ∈ R384, we attach our projection MLP gθ∗
(see Fig. 1) comprising 3 linear layers with 2048 hidden
dimension each followed by a GELU activation except for
the last layer which uses an output bottleneck dimension of
256 and a linear activation. Subsequently, we connect our
two heads to the output of the MLP q∗: 1) the language
MLP head ωθ∗ comprises 2 weight-normalized linear lay-
ers with GELU activation and a hidden dimension 2048 and
output dimension 768; 2) a linear classifier comprising a
single weight-normalized linear layer followed by a tem-
perature sharpened softmax (the student network tempera-
ture differs from the teacher network temperature). Please
refer to Tab. 6 for a list of hyperparameters.

A.2. LAVA Training Summary

LAVA training comprises a pretraining stage on a source
dataset and an adaptation/transfer stage to a target dataset.
During source pretraining, LAVA first learns self-supervised
representations by minimizing DINO [9] loss Lssl. Then
it uses the labels to learn a mapping (i.e. language MLP)
between the frozen self-supervised representations and the
label language embeddings using our hinge loss Lsem(Eqn.
2). During target training, LAVA uses a modified variant of
the DINO self-supervised objective (described in detail in
next section) to adapt its source representations to the tar-
get domain without any use of target labels. Subsequently,
LAVA employs a hybrid supervised/unsupervised loss to fur-
ther train on the target labelled/unlabelled instances: the
hinge loss on the labelled instances and our novel multi-
crop pseudo-label loss on the unlabelled ones. Importantly,
the language MLP is transferred directly from source to
target without the need to be reinitialised (as opposed to
a linear classifier head in vanilla transfer settings). That

10All section, table, and figure references are following the original paper.
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KNN before adaptation 51.09 35.28 56.49
KNN after adaptation (γ = 0.996) 65.11 58.31 59.68
KNN after adaptation (γ = 0.95) 69.08 62.29 61.58

Table 5: KNN validation accuracy for different values of teacher
momentum (γ).

is because it predicts a fixed size embedding in a dataset-
independent semantic space (the pretrained language model
space). Concisely, LAVA loss can be summarised as per:
L = Lssl + Lsem + Lpl with modulation coefficients to
control the contribution of each term to the different stages
of the training pipeline.

A.3. DINO Target Adaptation

After source DINO pretraining, we adapt to target
dataset by fine-tuning the source representations on target
unlabelled instances using the same DINO objective. In
all our experiments, we found that 50 epochs are suffi-
cient to adapt to the target dataset. Empirically, we found
that there are two crucial factors to enable the success of
this procedure: first, it is important to load the source pre-
trained weights of the MLP and the DINO head in conjunc-
tion with the backbone weights and not just the backbone
as commonly done when fine-tuning. The second factor
that highly impacts the adaptation procedure is the teacher
EMA momentum (γ) which controls the speed with which
the teacher model weights follow the student. We found
that allowing the teacher network to update its parameters
faster than it did during the source pretraining helps to bet-
ter adapt to the target dataset. More specifically, instead of
using the default value of γ = 0.996 used in [9], we use
γ = 0.95 during adaptation. In Tab. 5, we present a com-
parison between the different options for teacher momen-
tum while adapting to various datasets. We report the KNN
accuracy on 3 datasets of DomainNet before adaptation (i.e.
using ImageNet pretrained model) and after adaptation with
two different values for the teacher momentum. We observe
that adaptation with lower value of γ significantly improves
the learnt representations.

B. Coupling DINO and LAVA

We exploit the fact that DINO and LAVA share a simi-
lar self-distillation backbone and only differ in the projec-
tion heads architecture, their training procedure and the hy-
perparameters. Accordingly, to allow training both DINO
and LAVA using the same codebase, we simply attached
an additional head to LAVA’s MLP gθ∗ projection with an
output space dimension matching that of DINO’s (they use
65536 output dimension by default). Subsequently, one can
switch between DINO pretraining and LAVA training by ad-



Hyperparameter Value

batch size 256
learning rate 0.0005
optimizer adam
minimum learning rate 0.000001
warmup learning rate True
scheduler cosine decay
weight decay start/end 0.04/0.4
num small crops 8
num large crops 2
global crops scale (0.4, 1.0)
local crops scale (0.05, 0.4)
spatial augmentations random flip, color jitter,

gaussian blur, solarization.
out dim (c) 65536
student softmax temperature 0.1
teacher softmax temperature 0.07
warmup teacher temperature True
teacher temperature start 0.04
teacher momentum start (γ) 0.996/0.95
teacher momentum end 1.0

Table 6: DINO pretraining default hyperparameters.

Hyperparameter Value

learning rate 0.000025
num small crops student 6
num small crops teacher 0
num large crops student 2
num large crops teacher 2
student softmax temperature 0.1
teacher softmax temperature 0.04
warmup teacher temperature False
teacher momentum start (γ) 0.99
teacher momentum schedule cosine
language model mpnet-base-v2
language model latent dimension (d) 768
hinge loss margin (η) 0.4

Table 7: LAVA default hyperparameters.

justing the running configuration to match the respective
setup. An additional benefit for such coupling is that it al-
lows us to add DINO proposed loss as an auxiliary loss to
our model objective during adaptation and explore if it in-
troduces any benefits to LAVA. The intuition is that since
we use DINO for LAVA source pretraining and target fine-
tuning, it might be useful to continue applying its loss as an
auxiliary loss so as to prevent damaging or “forgetting” the
learnt self-supervised representations. However, we only
found marginal benefits of doing so in the very limited la-
bel regimes (e.g. 1 and 2-shot experiments in SSL) but such
benefits diminish once we have more labelled data.

classification semantic pseudo-label MSCOCO (FSL) Clipart (SSL)
✓ 66.41 43.39

✓ 54.55 42.74
✓ ✓ 67.68 48.89

✓ ✓ 57.25 48.57
✓ ✓ ✓ 66.41 48.65

Table 8: LAVA’s performance with different loss settings in SSL
and FSL regimes.

C. Ablation Study

Here, we are interested to examine the effect of key de-
sign choices on LAVA’s performance.

C.1. Semantics for FSL

Loss Ablations. In Tab. 1, we demonstrated a marginal
benefit for our proposed semantic loss under the SSL setting
and we concluded that the semantic loss is tailored specif-
ically to address generalisation to new classes. To evalu-
ate such claim, we conduct another experiment in the FSL
setting on MSCOCO dataset: starting from LAVA’s base
learner, described in Sec. 4, we run 100 test episodes of
MSCOCO (using the same random seed for the episode
generation) while ablating over three different losses: stan-
dard classification loss using one-hot labels as targets, our
proposed semantic loss using language semantics as tar-
gets, and our proposed multi-crop pseudo-labelling loss. In
Tab. 8, we report the ablation results of both SSL and FSL
regimes side-by-side for comparison. First, we observe that
pseudo-label loss helps in both cases but its role is more ev-
ident in SSL as expected. In contrast, we observe that the
semantic loss plays an important role in FSL: when com-
bined with pseudo-label loss, it achieves a 10% boost in ac-
curacy when compared with the standard classification loss
(67.68% vs 57.25%) while the difference between the same
cases in SSL is marginal (48.89% vs 48.57%). This con-
firms the usefulness of rich semantics to generalise to un-
seen classes as conjectured earlier. Finally, we observe that
using semantic and pseudo-labeling losses (LAVA standard
setting), we obtain the best performance for both SSL and
FSL cases.

Source of semantics. Here, we examine different al-
ternatives to obtain the class label embeddings (Ω). The
first choice as in the seminal work of [16] is to sim-
ply use the word embeddings of the class labels (such as
Word2Vec [30] or Glove [36]) to ground the semantic re-
lations between classes. Word embeddings are learnt in
an unsupervised manner to capture contextual relations be-
tween words based on their co-occurence statistics in a large
corpus of text. This results in vectors which capture con-
textual similarity but not necessarily visual similarity. Al-
ternatively, Nassar et al. [32] suggested to use knowledge
graphs [48] to adjust word embeddings in a way which
also correlates with visual similarity. While the two meth-
ods work reasonably well, they both suffer from a cov-
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Figure 6: We display a subset of the top (top) and least (bottom) ranked images based on their large crops pseudo-label
disagreement rate. We observe that the instances with high disagreement rate are those which contain multiple semantic
objects, while instances with the same semantic object tend to suffer less from inconsistencies.

erage issue because they use a predefined set of vocabu-
lary and so it is common that some of the target class la-
bels do not exist in their vocabulary. Accordingly, we sug-
gest in our work to use a pretrained language model using
sub-word tokenization such as BERT [12] and its variants.
Such models alleviate out-of-vocabulary problems by op-
erating on parts of words (i.e. subwords) instead of words.
Hence, to examine these different alternatives, we compare
LAVA’s performance when using each of them. We fix the
learning task to the MSCOCO FSL task where we run 100
FSL test episodes with different choices of embeddings:
1) Glove word embeddings [36], 2) Knowledge graph em-
beddings [32], 3) A multilingual BERT-based sentence en-
coder11, and 4) a praphrase language model [47]. We re-
spectively obtain the following top-1 average performance
on the 100 FSL MSCOCO episodes (using the same random
seed for the episode generation): 63.52%, 64.12%, 66.67%,
and 67.68%. Accordingly, we select the paraphrase model
as the default option for LAVA.

C.2. Design alternatives for Multi-crop pseudo-
labelling

As discussed in Sec. 3.2, we explored different design
choices to aggregate the multi-crop losses. We present a
comparison between the different design choices in Tab. 9.
Specifically, Li

multi can be calculated as pair-wise average
soft pseudo-label loss as in our method (in the main text),
or as the pair-wise average hard pseudo-label loss, i.e. by
replacing (pj

t ) with argmax(pj
t ). Alternatively, a single

average soft pseudo-label can be obtained based on all the
teacher crops then used as a soft target against all the student

11distiluse-base-multilingual-cased-v1 in
https://www.sbert.net/docs/pretrained_models.html

crops predictions, i.e.
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or a single average hard pseudo-label, i.e. by replacing
(pi

t) with argmax(pi
t) in Eqn. 2, or finally a single ma-

jority hard pseudo-label by applying a majority vote on
the hard predictions of all the teacher crops, i.e. using
pi
t = majority(argmax(pj

t ))|ũj
t ∈ T i instead of Eqn. 3.

D. Details of Analysis Experiments and Addi-
tional Examples

In this section we provide more details about the experi-
mental setup for the analysis experiments in Sec. 5, as well
as additional qualitative examples to provide more intuition.

D.1. Multi-crop pseudo-labelling analysis

Here, we elaborate on the experimental setup for the ex-
periment presented in Sec. 5 - Fig. 4. We train LAVA using
the clipart 2-shot SSL setting and while training, we cap-
ture the teacher and student predictions pt and ps for each
of the large and small scale crops for every training itera-
tion. Upon convergence (20 epochs of training), we apply
argmax on all the captured values to obtain the most domi-
nant “pseudo-label” as viewed by the student/teacher based
on each of the crops. Subsequently, we use the ground truth
labels of the SSL unlabelled instances to calculate the true
top-1 accuracy associated with each of the crops and we av-
erage it over each epoch. Additionally, we calculate the dis-



real 2-shot clipart 2-shot real 2-shot clipart 2-shot real 2-shot clipart 2-shot
Aggregation strategy Small crops count Momentum

pair-wise average soft 58.79 48.65 0 54.26 46.97 0 27.84 38.44
pair-wise average hard 57.22 46.25 4 56.12 47.9 0.9 51.02 46.02
single average soft 55.89 45.98 6 58.57 48.57 0.95 55.38 46.86
single average hard 54.12 45.12 8 57.77 48.68 0.99 58.67 48.57
single majority hard 55.95 46.43 10 57.97 48.42 0.999 57.90 30.81

Table 9: Further Ablations. Left: multi-crop loss aggregation strategy. Middle: number of small crops seen by the student
model. Right: the effect of teacher momentum (γ).
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Figure 7: Additional examples of class collapse when transferring from ImageNet to MSCOCO dataset.

agreement rate among the small/large crops as the ratio be-
tween the number of unique pseudo-label classes obtained
for small/large crops to the total number of small/large
crops used. For example using 6 small crops, if the pseudo-
labels obtained were (dog, dog, dog, cat, squirrel, mouse)
then the disagreement rate is = 4

6 = 0.667. In Fig. 4, we
report the accuracy based on one of the large crops seen by
the student and teacher (denoted as student and teacher in
the legend) together with two small crops seen by the stu-
dent (denoted as small1 and small2). Even though, we use
6 small crops and 2 large crops during training, we only dis-
play the above mentioned subset to avoid clutter. Moreover,
we report the disagreement rate among the small crops and
the large crops (denoted as disagree small, disagree large).

Finally, we rank all the training instances based on the dis-
agreement rate among their large crops, averaged over all
the training iterations, to examine which images suffer the
most and the least from pseudo-labelling inconsistencies
due to cropping. We display an additional subset of the

top and least ranked images in Fig. 6. We observe that
the instances with high disagreement rate are those which
contain multiple semantic objects; which confirms our intu-
ition about the necessity of the proposed multi-crop pseudo-
labelling strategy.

D.2. Collapse Analysis

Here we provide further details about the transfer col-
lapse described in Fig. 2. Doersch et al. [13] originally
suggested that collapse happens as a result of the super-
vised pretraining used by most recent FSL methods when
training their base learner. Essentially, since the learner
is trained to merely classify images into one of a prede-
fined set of classes, the learner encodes information which
is useful to discriminate such training classes but discard
any other information including that which is useful to gen-
eralise to new classes or domains. We further categorise
supervision collapse into two types: class and domain col-
lapse as we illustrate below. To visually examine such



problem, we follow a protocol inspired by [13]: first, we
train a supervised base learner (ViT) on all the instances of
the 712 Meta-dataset ImageNet train classes using standard
classification cross-entropy loss and following [51] train-
ing procedure. Then, we randomly select 100 instances per
each of the 712 train classes together with 1000 query in-
stances from a given target dataset (e.g. MSCOCO or cli-
part). Subsequently, we use the supervised base learner and
LAVA to obtain the latent representations (i.e. zt) for each
of the sampled images (712 x 100 train + 1000 test query
images); and we retrieve the 10 nearest neighbours (based
on cosine similarity) for each of the 1000 query images with
respect to such representations. Note that the 1000 images
are never seen by either of the models during training and
hence we hope that a general visual learner would be able
to retrieve, for each query image, neighbours which are at
least semantically related. If the learner retrieves a majority
of neighbours which belong to one of the train classes for
a given query image, it is said that its representations have
collapsed to that training class. In Fig. 2 and Fig. 7, we
display collapse examples from MSCOCO dataset, where
we observe that e.g. a query “bench” instance has collapsed
into “oxcart” and an “orange” instance has collapsed into a
“robin” in the supervised learner case, while LAVA retrieves
plausible neighbours.

To further investigate collapse in a different visual do-
main, we conduct a similar experiment but using clipart
as the target dataset. Interestingly, we witness two types
of collapse when the domain also differs, which we de-
note as “class collapse” (Fig. 8) and “domain collapse”
(Fig. 9). The former is similar to what was described ear-
lier where the majority of retrieved neighbours belongs to
a semantically different train class which shares superfi-
cial similarity with the query image. While the latter is
when the retrieved neighbours belong to a semantically sim-
ilar train class albeit in the training visual domain rather
than the target domain. To elaborate, examining Fig. 8,
we see “class collapse” where a “monalisa” clipart instance
collapses to “book jacket” ImageNet class (top section);
and a “wheel” instance collapses to “dome” (third section
from top). Whereas in Fig. 9, we witness a “domain col-
lapse” where e.g. “hamburger” clipart instances collapses to
“cheese burger” which is semantically related but belongs
to the “real” visual domain rather than the target “clipart”
domain.



Query

monalisa monalisa monalisa monalisa monalisa monalisa beardfrying panbeard

monalisa book jacket book jacket book jacket book jacket cloak maskbook jacketmegaphone

Nearest Neighbours (LAVA)

Nearest Neighbours (Supervised)

Query

tiger tiger tiger tiger tiger tiger tigertigertiger

tiger anemone fish rock beauty fish zebra rock beauty rock beautycoral reefrock beauty

Nearest Neighbours (LAVA)

Nearest Neighbours (Supervised)

Query

wheel wheel wheel wheel fan wrist watch water melonwrist watchflower

wheel wheel dome dome dome church domecoildome

Nearest Neighbours (LAVA)

Nearest Neighbours (Supervised)

Query

palm tree palm tree palm tree palm tree beach beach campfiresailboatbridge

palm tree eft vine snake thunder snake squiggle lizard nematodegrapeschameleon

Nearest Neighbours (LAVA)

Nearest Neighbours (Supervised)

Query

palm tree palm tree palm tree palm tree beach beach carrotsailboatbeach

palm tree daisy daisy grass daisy daisy daisydaisydaisy

Nearest Neighbours (LAVA)

Nearest Neighbours (Supervised)

Figure 8: Class collapse examples when transferring from ImageNet to clipart dataset.
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teapot teapot teapot teapot coffee cup coffee cup pitcherteapotcup
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Figure 9: Domain collapse examples when transferring from ImageNet to clipart dataset.


