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1. Certification performance on different noise strengths (varying σ)

Figure 1. Our method (DE-CROP) consistently provides better certified robustness across different noise strengths with σ ∈
{0.12, 0.25, 0.50, 1.00}. The results are presented on limited training data Dlim

train which is 1% of entire training samples Dtrain of
CIFAR-10.

*denotes equal contribution.



2. Certified guarantees on different quantity of limited training data

Figure 2. The amount of limited training data (|Dlim
train|) is k% of Dtrain. We perform ablation for different choices of k (i.e. 1, 5, 10,

20 and 100) and report our certified performance. DE-CROP significantly boosts the certified accuracy across the radii when the available
training set size is small, showing the efficacy of our method for limited data settings. The benefit is limited when the amount of training
samples is high. The experiments are conducted on CIFAR-10 dataset with noise strength σ = 0.50



3. Sensitivity Analysis of mixing coefficient (α)
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Figure 3. Ablation to determine the sensitivity of our proposed method (DE-CROP) to change in value of mixing coefficient (α). We
perform experiments with three different values of α (i.e. 0.25, 0.50, 0.75) and observe that the certified performance of DE-CROP is
stable across the broad range of α values allowing our technique to be easily adoptable without significant hyper-parameter tuning.

4. Additional experimental details
For all our experiments, we use three 1080Ti 12Gb cards. The additional details of specific components of our proposed

approach (DE-CROP) are provided below:

Training of base classifier (Bc): The base pretrained classifier Bc is trained for 300 epochs with cross-entropy loss and
stochastic gradient descent optimizer. The initial learning rate is 0.1, which reduces by a factor of 10 every 100th epoch.

Training of denoiser network (Dn): We use the architecture proposed by [4] for our denoiser (Dn). The network Dn

is a 17 layers deep fully convolutional network that contains multiple blocks of convolutional and batch-norm layers fol-
lowed by ReLU activation. We train the denoiser network Dn for 600 epochs, adopting the same learning routine as Salman
et al. [2]. The Adam optimizer is used with a learning rate of 0.001 for initial 50 epochs, followed by stochastic gradient
descent optimizer with a learning rate of 0.001 that reduces by a factor of 10 every 200th epoch.

Training of domain discriminator (Dd): We use a vanilla multi-layer perceptron architecture with one hidden layer of
size 100 units as the architecture for domain discriminator (Dd). While training the Dd, we initialize the Dn by pre-training
it using Llc, Lcs and Lmmd losses. Then optimize the parameters of Dd (ϕ) using Adam optimizer with a learning rate of
1e-5. Moreover, in order to ignore the noisy gradients from Dd during the initial phase of training the domain discriminator
we use a scheduler (similar to [1]) to weight that value of negative gradient by β that is gradually increased over the course
of training. We use the standard parameters for certification described by Salman et al. [2].

Details on augmentations: In the main draft (Table 2 of Sec. 5.1), we showed experimental results to demonstrate the effect
of various augmentation policies in improving certification performance. In policy 1, we apply the different transformations
- ‘randomized cropping‘ followed by ‘random horizontal flipping with probability of 0.5. For policy 2 we randomly select
one of the following augmentations: ‘random horizontal flip (probability=0.5)’, ‘random vertical flip (with probability=0.5)’,
‘randomized cropping’, ‘random affine transform to translate (with parameters = (0.25, 0.50) and rotate (degrees=10) the
image. Whereas for policy 3 all the augmentations of policy 2 are applied in a sequential manner making it a stronger
augmentation via composition of different transformations that are applied on a given sample.



5. Visualizations of Original and Generated Samples
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Figure 4. Visualization of the original, generated boundary and generated interpolated samples for CIFAR-10 dataset. The boundary
samples are generated by perturbing the original sample with adversarial noise (refer eq. 5 in the main draft) and interpolated samples are
generated by minimizing the Mean Squared Error with interpolation of original and boundary samples logits as the ground truth (refer eq. 7
in the main draft). Our simple and intuitive sample generation technique avoids complicated and time consuming methods like generative
adversarial networks. Moreover, the generated samples ensure preservation of class semantics while providing diversity in the feature space
of pre-trained classifiers (ref Fig. 2 in the main draft)



6. Certifying pretrained models of different architecture using limited training data
We adopted the denoiser network proposed by [4] i.e. DnCNN for all our ablations in the main draft. In order to demon-

strate the adaptability and effectiveness of our proposed approach (DE-CROP) across diffrent choices of denoiser architecture,
we compare our performance against Salman et al. [2] on a different denoiser architecture i.e. MemNet [3]. Similar to the
results on DnCNN in the main draft (refer Fig. 4 in the main draft), we significantly outperform Salman et al. [2] in a limited
data setting (Dlim

train = 1% of Dtrain) across all the radii on CIFAR-10 with noise strength σ = 0.25 (refer Fig. 5).
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Figure 5. Performance comparison of our approach (DE-CROP) against Salman et al. [2] across multiple choices of denoiser architectures
i.e. DnCNN and MemNet. DE-CROP achieves significantly better results on both DnCNN and MemNet without any hyperparameter
tuning demonstrating its practical usefulness. The results are presented on the CIFAR-10 dataset with noise strength σ = 0.25 and training
set size equal to 1% of the entire trainset.

7. Effect of increasing interpolated samples
As described in Sec. 4.1 of the main draft, we generate one boundary sample (xi

b) and one interpolated sample (xi
int) for

each data sample (xi
o) belonging to our available limited training set (Dlim

train). In this section, we aim to explore whether
increasing the amount of interpolated samples generated per sample leads to proportional benefit in the overall certification
performance. In Fig. 6 we observe that increasing the amount of interpolated samples generated (per sample) from 1 (also
reported in the main draft) to 2 and 5 does not increase the performance. Thus, we generate 1 interpolated sample only as
it provides similar performance with cheaper computational overhead. Note, our performance with any of the three choices
discussed (1, 2 or 5 interpolated samples) comfortably outperforms other state-of-the-art techniques.
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Figure 6. Effect of increasing the number of interpolated samples generated per sample on certification performance for CIFAR-10 dataset
with noise strength σ = 0.25 and available limited training set = 1% of entire training data. We observe that the improvement in performance
is not proportional to the number of interpolated samples generated. Hence, we generate only 1 interpolated samples in our proposed
approach DE-CROP.

8. Performance of DE-CROP when boundary samples crafted via different adversarial attacks

Method Standard Certified Robust Certified
(r=0.00) (r=0.25) (r=0.50) (r=0.75)

Baseline 29.80 9.20 1.40 0.00
DE-CROP (PGD) 57.60 27.20 9.20 2.20

DE-CROP (Auto Attack) 53.20 29.20 11.20 1.20
DE-CROP (DeepFool) 54.40 26.40 10.20 1.80

Table 1. Investigating the effect of the choice of adversarial attack (for crafting boundary samples) on certified performance using our
proposed approach DE-CROP. We significantly outperform the baseline across the different choices of adversarial attacks (i.e., PGD,
DeepFool, and Auto Attack). We observe that although all three of them perform similarly, PGD obtains better certified standard accuracy
compared to Auto Attack and DeepFool. Thus, we use PGD in the main draft.

9. Importance of boundary samples in DE-CROP

Method Standard Certified Robust Certified
(r=0.00) (r=0.25) (r=0.50) (r=0.75)

Baseline 29.80 9.20 1.40 0.00
DE-CROP without Boundary Samples 52.46 20.26 5.80 0.40

DE-CROP with Boundary samples 57.60 27.20 9.20 2.20
Table 2. Demonstrating the utility of crafting boundary samples for our proposed approach: DE-CROP. In absence of boundary samples,
interpolated logits are generated by using a pair of random samples from the same class (average results over three runs are reported). In
contrast, we observe that the certified performance significantly improves when we utilize adversarial attack to generate boundary samples
and use them along with the original samples to obtain interpolated logits. Thus, clearly highlighting the importance of crafting boundary
samples in our method (DE-CROP) for certified defense in limited data.
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