
Supplementary Material:
Analysis of Master Vein Attacks on Finger Vein Recognition Systems

Huy H. Nguyen1, Trung-Nghia Le1,3,4, Junichi Yamagishi1, and Isao Echizen1,2

1National Institute of Informatics, Tokyo, Japan 2The University of Tokyo, Tokyo, Japan
3University of Science, VNU-HCM, Vietnam 4Vietnam National University, Ho Chi Minh City, Vietnam

{nhhuy,jyamagis,iechizen}@nii.ac.jp

This Supplementary Material is organized as follows. First, we provide the detail of the latent variable algorithm (LVE)
used to craft master veins in section 1. Next, we include some additional visualizations of real and generated finger veins in
different settings in section 2. Last, we present an ablation study on top-k AdvML attack in section 3.

1. Latent Variable Evolution Algorithm
The LVE algorithm, which is used by the LVE-based methods to generate master veins (visualized in Fig. 3 in the main

paper), is described in detail by Alg. 1. Regarding the implementation of the CMA-ES, we used the pycma library1. For
simplicity, we used its default parameters.

Algorithm 1 Latent variable evolution.
m← 18 ▷ Population size, default value by the pycma library.
procedure RUNLVE(m,n) ▷ m is population size and n is total number of iterations.

MasterVeins = ∅ ▷ Master vein set.
Scores = ∅ ▷ and corresponding score set.
z← rand() ▷ Initialize latent vectors z ∈ Rm.
for n loops do ▷ Run LVE algorithm n times.

V← pθ(z) ▷ Generate m vein images V
s← 0 ▷ Initialize scores s ∈ Rm.
for each vein image Vi in V do

for each vein image Dj in database D do
si ← si+ Matcher(Vi, Dj) ▷ Calculate similarity score using matcher.

si ← si
|D| ▷ Calculate the mean scores.

Vb, sb ← GetBestVeinImage(V, s) ▷ Identify local best master vein image.
MasterVeins←MasterVeins ∪ {Vb}
Scores← Scores ∪ {sb}
z← CMA ES(s) ▷ Evolve z on basis of s.

Vgb, sgb ← GetBestVeinImage(MasterVeins, Scores) ▷ Identify global best master vein image
return Vgb, sgb ▷ Best master vein and its score.

2. Additional Visualizations of Generated Finger Veins
Additional samples of real finger veins and those generated by the LVE-based methods are shown in Fig. 1. Effects of

the number of iterations and filters used by the AdvML method on the quality of adversarial master veins are visualized in
Figs. 2 and 3, respectively.

1https://github.com/CMA-ES/pycma

Figure 1. Examples of real finger veins (first row) and those generated by our proposed method (LVE3, second row), β-VAE (LVE2, third
row), and WGAN-GP (LVE1, last row). Since latent codes are sampling from noise, generated images have the randomness property.
Among synthetic finger veins, those generated by our method had the best quality, while those generated by WGAN-GP do not look like
finger veins.

a. Original
image

b. 50
iterations

c. 100
iterations

d. 200
iterations

e. 500
iterations

f. 1,000
iterations

Figure 2. Effect of the number of iterations on the quality of adversarial master veins.

a. Original
image

c. Gaussian
blur

d. Low-pass
filter

b. No filter e. High-pass
filter

f. Laplacian
filter

Figure 3. Effect of filters on the quality of adversarial master veins.

a. Original
image

b. Top-2.5% c. Top-5% d. Top-10% e. Top-20% f. Top-40% g. Top-60% h. Top-80% i. All labels

Figure 4. Adversarial master veins generated with different k values in top-k-label targeted attack.

3. Ablation Study on Top-k AdvML Attack
Examples of adversarial master veins generated with different k values in the AdvML attack with top-k labels are shown

in Fig. 4. There are no significant differences in the amounts of perturbations between them. The relationship between k and
FARs is visualized in Fig. 5. There are no significant differences in the FARs, especially when k is in the [5%, 60%] range.
In practice, it is better to avoid the extreme values of k. If k is too small, its attack ability is limited. If k is too large, it makes
the optimization hard to converge.

1.65

1.70

1.75

1.80

1.85

1.90

2.5 5 10 20 40 60 80 100

Fa
ls

e
ac

ce
pt

an
ce

 ra
te

 (%
)

Top-k (%)
Figure 5. Relationship between k and FARs in top-k-label targeted attack. FARs were calculated using the ResNeXt-50-based recognition
system on the training set of the SDUMLA-HMT database.

