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Figure 1. Image enhancement network in detail. A lightweight
UNet architecture is employed to predict the gamma map γ for
each channel. The enhanced image is obtained by applying the
gamma mapping function with the predicted gamma map

In this supplementary material, we provide implementa-
tion details of our proposed method and additional results
which are not included in the main paper due to the space
limitation.

1. Implementation Details
Image Enhancement Network. As described in the main
paper, we employ a lightweight UNet architecture [11] as
illustrated in Figure 1 to build up our network. The specifi-
cation of our network is given in Table 1.
Training Process. Our proposed approach is implemented
using PyTorch framework. We train our image enhance-
ment network on an NVIDIA A100 GPU from scratch, us-
ing the Adam optimizer with a batch size of 64. The learn-
ing rate is 0.0005 and is reduced by half on plateau with the
patience of 5. The input images are resized to 256 × 256
without applying any augmentation techniques. For the
SICE dataset, our model is trained for 140 epochs with the
coefficient of the total variation loss α being 5. For the Afifi
dataset, the number of training epochs is 30 and α is set to
500.

Table 1. Architecture detail of the image enhancement network.
#Output denotes the number of output channels.

Input Expand size #Output MobileNet Stride
2562 × 3 6 3 V3 1
2562 × 3 24 16 V2 2
1282 × 16 24 16 V2 1
1282 × 16 48 32 V2 2
642 × 32 48 32 V2 1
642 × 32 48 16 V2 1
1282 × 32 48 16 V2 1
1282 × 16 24 3 V2 1
2562 × 6 9 3 V3 1
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Figure 2. The influence of the pseudo GT generator on Ze-
roDCE [5] and EnlightenGAN [6]. Our proposed approach also
improves these two networks’ abilities of handling over-exposure
cases

2. Ablation Study

The influence of pseudo GT image generator. As stated
in the main paper, our training strategy also shows its ef-
fectiveness when combined with other image enhancement
networks. Specifically, we apply our training strategy to
the network architecture of ZeroDCE [5] and Enlighten-
GAN [6] with other settings kept unchanged. The results



Method SICE Afifi et al.
PSNR SSIM PSNR SSIM

N = 1 17.74 0.704 19.36 0.869
N = 3 17.76 0.702 19.15 0.865
N = 5 17.84 0.706 18.61 0.856

Table 2. The impact of the number of randomly generated refer-
ence N to the final performance of our approach on SICE [2] and
Afifi [1] datasets.

shown in Figure 2 demonstrate that our training strategy is
robust to the network architecture selection when consis-
tently improving the performance.
The impact of the number of random reference images.
We further evaluate our model’s performance when adjust-
ing the number of random reference images. The results are
presented in Table 2. We empirically find that increasing the
number of random references improves the quality of the
output images in the SICE dataset. However, with the Afifi
dataset, it might have a negative impact on network perfor-
mance. Thus, this hyper-parameter is dataset-specific.
Impact of the range for sampling reference images. In
terms of brightness modification, we found that the best
range to sample the reference images is from 0 to 3 for
darker image generation and from -2 to 0 for synthesizing
brighter images. If we narrow the range for under-exposure
to (0, 2), our model’s performance decrease noticeably. The
reason is that the produced gamma map is then limited, thus,
our model could not increase the brightness of the input im-
age to a proper value in extreme cases, as demonstrated in
the two last rows of Fig. 2. On the other hand, regarding
the range of sampling brighter images, extending this range
from (−2, 0) to (−3, 0) might create undesired artifacts in
overexposed areas. Due to image clipping, the color infor-
mation in these areas is not well preserved. Therefore, when
reducing image brightness, instead of producing a vivid im-
age, our model tends to modify the color tone of the input
image to gray, which is visually unpleasant.
The impact of the network size. We examine how our
image enhancement network performs when the number of
trainable parameters is increased or decreased. The quanti-
tative results are shown in Table 3 and qualitative examples
are visualized in Figure 4. Although the quantitative results
vary slightly, we do not observe any obvious failure cases
when visually comparing the output images. The difference
in quantitative results appears to be caused by the shift in
the brightness level of the output images compared to the
ground truths. However, such output images are still ac-
ceptable when analyzed by humans.
Comparison with an image fusion method. Although our
pseudo GT generator’s design are inspired by the high level
idea of the work introduced in [9], there are some noticeable
differences between ours and theirs including our new qual-
ity score and our image combination strategy. We present
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Figure 3. The impact of the range for sampling random reference
images. U(a; b) indicates the range to sample brightness factorX .
The first and third rows show the whole images, while the second
and last rows show the corresponding close-ups.

Method SICE Afifi et al.
PSNR SSIM PSNR SSIM

# channels × 0.5 17.58 0.703 19.36 0.869
# channels × 1 17.74 0.704 19.36 0.869
# channels × 2 17.59 0.702 19.29 0.868

Table 3. The performance in PSNR and SSIM with different net-
work parameters. The higher the better. # channels represents the
number of channels in each layer of the proposed network (except
the first and last layers)

Method SICE Afifi et al.
PSNR SSIM PSNR SSIM

µ = 0.4 16.02 0.690 17.97 0.844
µ = 0.5 17.74 0.704 19.36 0.869
µ = 0.6 16.60 0.6923 18.37 0.855

Table 4. The performance in PSNR and SSIM with different well-
exposed levels µ . The higher the better

Method PSNR SSIM
[9]’s quality score + [9]’s RCS 15.14 0.652
[9]’s quality score + our RCS 16.78 0.702
Our quality score + our RCS 17.74 0.704

Table 5. Comparison with the quality score and reference combi-
nation strategy (RCS) proposed in [9]

the comparison between our method and the method in [9]
when they are used inside pseudo GT generator module in
Table 5. The results suggest that our proposed design are
more effective than the prior work.
Well-exposed level. We conduct additional experiments to
evaluate the effect of well-exposed level µ in the Equation
(2) of our main paper on the performance of our approach.
As shown in Figure 5 our model trained with a well-exposed
level of 0.4 does not work effectively on under-exposed im-
ages while increasing this value to 0.6 makes our model fail
to recover the detail of over-exposed images. Training with



Input # channels x 0.5 # channels x 2 Ground truth# channels x 1
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Figure 4. Samples whose PSNR values varied most when the number of network parameters is changed. # channels represents the number
of feature maps in each layer of the proposed network (except the first and last layers). It seems that the change in PSNR value is mostly
caused by the shift in the brightness level of the output images compared to the ground truths

Input 𝜇 = 0.4 𝜇 = 0.6 Ground truth𝜇 = 0.5

Figure 5. Visual comparison among outputs of our model trained with different well-exposed level µ. Training with a well-exposed level
of 0.5 seems to balance our model in handling both under-exposed and over-exposed images

a well-exposed level of 0.5 seems to balance our model be-
tween these two cases, yielding the highest quantitative re-
sults, as shown in Table 4.

3. Visual Comparison Results
This section presents additional qualitative results

on other different public datasets including DICM [7],
MEF [8], TMDIED1. We compare our method with two

1https://sites.google.com/site/vonikakis/datasets

non-learning methods: CLAHE [10], IAGCWD [3], an un-
paired method EnlightenGAN [6], two unsupervised meth-
ods: ZeroDCE [5], Zheng and Gupta[12], and two super-
vised methods: HDRNet [4], Afifi et al. [1]. The results are
presented in Figures 6, 8, 9 and 7. It is worth noting that all
the learning-based methods are trained on the SICE dataset
except the Afifi et al. [1] due to its Matlab license issue.
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Figure 6. Visual comparison on a lowlight image taken from the DICM dataset. The unsupervised methods including ZeroDCE [5], Zheng
and Gupta [12], and our method produce more compelling results than others. Among them, our method’s result is arguably the best in
terms of contrast and color preservation as shown in boxed regions
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Figure 7. Visual comparison on an image taken from the TMDIED dataset. Our result image seems to be more lively
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Figure 8. Visual comparison on an image taken from the MEF dataset. Our model gives a better result in terms of enhancing under-exposed
areas and preserving the original color temperature
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Figure 9. Visual comparison on an image taken from the TMDIED dataset. Our method gives the best balance in contrast between the dark
and the bright regions
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