
Appendices for Towards Disturbance-Free Vi-
sual Mobile Manipulation

A. Environment Details
Our experimented environment directly follows the vi-

sual mobile manipulation task, ArmPointNav, in the Manip-
ulaTHOR framework [16]. The details of the task and en-
vironment can be seen in the ManipulaTHOR paper. Here,
we give a high-level overview of this task.

ArmPointNav has a dataset called APND that stores
the configurations of each episode. APND consists of 29
kitchen scenes in AI2-THOR [47] that have more than 150
object categories. Among the scenes, 19 of them are used
for training, 5 of them for validation, and 5 for testing.
There are 12 pickupable categories, and 6 of them (Ap-
ple, Bread, Tomato, Lettuce, Pot, Mug) are used for training
(i.e., seen objects), and the others (Potato, SoapBottle, Pan,
Egg, Spatula, Cup) are used for testing and validation (i.e.,
novel objects).

Each episode has a configuration that specifies the initial
and target positions of the target object and the initial posi-
tion of the agent. The goal for the agent is to first navigate
towards the target object, pick it up with a magnet, and then
navigate towards the target location to release the object.

Mathematically, ArmPointNav can be formulated as a
POMDP (S,O,A, R, T, �, P,O). Each state s 2 S in-
cludes the 3D positions of the robot, the goal, and all the
obstacles in the room. Each observation o 2 O includes a
depth map (224⇥224 single-channel image) and a distance
coordinate to the goal (3 dimensions). The goal switches
from the initial position of the target object to the desired
position of the target object once the agent picks it up. The
action space (Alarge) has 21 actions including: (1) naviga-
tion (move ahead, rotate), (2) manipulation (move the arm
and gripper), (3) camera rotation, and (4) pick up and done.
The details of the action space can be seen in Fig. 8. The
reward function R is defined in Eq. 1 and Eq. 2. The time
horizon T = 200 steps, and the discount factor � = 0.99.
The transition P (st+1 | st, at) determines how the robot
and obstacles move in 3D coordinates, and the emission
O(ot | st) determines the rendering of egocentric vision
to the robot.

The task is a POMDP rather than an MDP because the
robot cannot observe the ground-truth positions of the ob-
stacles nearby, which are crucial for optimal control with a
Markovian policy. It can only use the historic information
of egocentric depth maps to infer them.

B. Experiment Details
We train our agents using the AllenAct framework [93].

All the experiments including baselines and compared self-
supervised auxiliary tasks share most training hyperparam-

eters. Each experiment uses 19 processes (each sampling
rollouts on one training scene) and trains for 45M frames
(for two-stage curriculum: pre-training for 20M frames, and
then fine-tuning for 25M frames).

We use the DD-PPO algorithm [96] with default config-
uration. The model architecture (Fig. 2) uses a modified
ResNet18 with group normalization [99] following DD-
PPO as the visual encoder, an embedding layer into 32-dim
for goal coordinates, an embedding layer into 16-dim for
previous actions, then a GRU with a hidden size of 512, and
finally linear actor and critic heads.

For the self-supervised auxiliary tasks CPC|A and In-
verse Dynamics, we directly follow the implementation of
Ye et al. [104]6.

For our disturbance prediction auxiliary task, we use a
2-layer MLP of hidden size 128 to predict the disturbance
distance signals 2 [0, 1]|Alarge|, for all the actions 2 Alarge

(similarly to Deep Q-Network [63]), given the current belief
2 R512. The auxiliary task uses the Focal loss [56] with
� = 2.0 and ↵ = 0.5. The overall objective is a weighted
sum of the RL loss and the auxiliary task loss, with a fixed
weight of 0.1 on the auxiliary task, following Ye et al.

C. PPO-Lagrangian Details
PPO-Lagrangian is a common baseline from the safe RL

literature [76] which aims to solve constrained MDPs [3].
In our paper, the original objective is the ArmPointNav task
with original reward,

J(⇡) := E⌧⇠⇡

"
TX

t=1

�
t
rt

#
, (5)

and the constraint is on the total disturbance distance, which
we want to be non-positive:

JC(⇡) := E⌧⇠⇡

"
TX

t=1

�
t(dobjectst � d

objects
t�1)

#
0 . (6)

The corresponding Lagrangian is:

min
��0

max
⇡

J(⇡)� �JC(⇡) , (7)

where � is the Lagrangian multiplier.
The Lagrangian method alternatively update the policy

⇡ and the Lagrangian multiplier �:

• Given current Lagrangian multiplier �k and the learn-
ing rate ⌘⇡ , the policy ⇡k is updated by

⇡k+1 ⇡k + ⌘⇡r⇡(J(⇡k)� �kJC(⇡k)) . (8)

6
https://github.com/joel99/habitat-pointnav-aux

https://github.com/joel99/habitat-pointnav-aux

• Given the current policy ⇡k+1 and the learning rate ⌘�,
the Lagrangian multiplier �k is updated by

�k+1 (�k + ⌘�JC(⇡k+1))+ . (9)

The initial value of Lagrangian multiplier �0 is set by the
user, and is shown to be crucial to performance [1].

Applying the Lagrangian method to the PPO algorithm,
we obtain the PPO-Lagrangian method. We use the same
hyperparameters in (DD-)PPO as that in our method.

D. Additional Results
D.1. Reliable Evaluation Plots

We follow the rliable library7 to evaluate our method and
baselines. Fig. 6 shows the mean and IQM of SR and SR-
woD metrics (reported in Table 3), and also their 95% con-
fidence intervals (CIs).

We find that fine-tuning stage (stage II) is much more
robust to seeds with narrower CIs, than trained-from-scratch
stage (stage I), and also PPO-Lagrangian. This suggests the
robustness and reliability of our method.

D.2. Main Results on Testing Scenes with Seen Ob-
jects

Table 4 shows the main results on testing scenes with
seen objects (recall that Table 3 is on testing scenes with
novel objects). Generally speaking, the trend in Table 3
holds in Table 4:

• Auxiliary tasks can improve sample efficiency (Block
1 and 2).

• Training from scratch learns to stop early with poor
success rate (Block 2 and 3).

• Two-stage training achieves higher SRwoD without
sacrificing SR (Blocks 2, 3, and 5).

• Two-stage training outperforms the safe RL baseline
(Block 4 and 5).

Comparing Table 4 to Table 3, we find that the SR in
Block 1, 3, and 5 increases by ⇡ 1-2% for all the auxiliary
tasks, and SRwoD in Block 5 increases by ⇡ 2%. This is
understandable because Table 4 are evaluated on seen ob-
jects.

D.3. Effect of Disturbance Penalty Coefficient
The disturbance-free objective in Eq. 2 is sensitive to the

disturbance penalty coefficient �disturb. Ideally, the coef-
ficient should be large enough to enforce a hard constraint
on disturbance. But a too-large coefficient may hinder the
agent from reaching the goal with a very small disturbance

7
https://github.com/google-research/rliable

distance, thus affecting the success rate. To balance be-
tween SR and SRwoD, one has to tune the coefficient on
a validation set.

Fig. 7 shows the performance of the fine-tuned models
with disturbance prediction auxiliary tasks (Block 5), with
different penalty coefficients �disturb. SRwoD monotoni-
cally increases from 79.5% to 82.5% with a larger distur-
bance penalty coefficient, which shows the effectiveness
of our method. We finally choose �disturb = 15.0 be-
cause it balances SR and SRwoD best. Surprisingly, dis-
turbance avoidance (�disturb = 15.0) can even help suc-
cess rate, compared to the model with original reward (i.e.,
�disturb = 0.0). Note that these experiments are only ab-
lations over the validation set and we only calculate the fi-
nal performance of our model on the test set when using
�disturb = 15.0.

D.4. Is the Large Action Space Necessary for Distur-
bance Avoidance?

As described at the beginning of Sec. 4.2, we found,
qualitatively, that the original action space hinders the abil-
ity of agents to perform disturbance-free tasks. E.g., the
agent may not even be able to see the disturbance it causes,
as it cannot look down. Table 5 shows our ablation study on
the action space on the validation set. Interestingly, under
the original objective (Block 1; reward r) in ArmPointNav
and without auxiliary tasks, the performance of our base-
line drops when switching from the small action space to
a large one (Rows 1-2 and 5-6). But with our disturbance
prediction task (Row 3 and 7), the performance increases by
2.4%.

However, the large action space helps with achieving a
disturbance-free agent. Our best model (Block 5) performs
better with the large action space when trained with the new
disturbance-free objective (Row 4 and 8).

Moreover, by qualitatively examining the actions taken
by well-trained agents (Block 5), we find that, in the
large action space setting, agents almost always take the
LookDown 2 Alarge \ Asmall as their first action allow-
ing them a better view of the impact of their actions (see
App. D.5). Thus, quantitatively and qualitatively, we find
that the added actions indeed help avoid disturbance.

D.5. Agent Action Distribution
To better understand how the agent behaves across time,

we plot the heatmap of the action distribution of our best
agent (the last row of Table 3) in Fig. 8. We show
the action distribution for each time-step averaged across
episodes. This visualization gives us several insights into
the agent’s behavior. Firstly, LookDown is almost always
taken at the first time-step to enable the agent to have a
better perspective, this justifies the necessity of using the
large action space for the disturbance-free objective. Sec-

https://github.com/google-research/rliable

Figure 6. Mean and IQM with 95% (stratified bootstrap) confidence intervals on SR (top figure) and SRwoD (bottom figure), following
the rliable library [2]. We denote each method by its stage (I, II), reward (r,r0), and auxiliary task. 1 and 15 in PPO-Langragian stand for
the initial value of the multiplier. All methods are trained for 45M frames.

ondly, we can clearly see that there are two phases dur-
ing an episode. The first phase is to move to pick up
the target object (roughly from time-step 0 to 45), where
the agent first moves ahead (MoveAheadContinuous)
and rotates (RotateLeft/RightContinuous) to nav-
igate, then the agent moves the arm and gripper down-
wards (MoveArmHeightM, MoveArmYM), and finally the
agent picks up (PickUpMidLevel) the target object. The
second phase focuses on taking the object to the target
location (roughly from time-step 40 to 100). Similar to
the first phase, the agent first moves ahead and rotates
to navigate, and then moves the arm and gripper down-
wards. But the agent also demonstrates delicate arm be-
havior during the second phase, such as moving the gripper

in XY plane (MoveArmX/Y*) and rotating the arm wrist
(RotateArmWrist*), to reduce disturbance to the other
objects when placing the target object.

E. Code and Videos
Our code is available at https://github.com/

allenai/disturb-free. The videos of our method
and compared methods can be accessed at https://
sites.google.com/view/disturb-free.

https://github.com/allenai/disturb-free
https://github.com/allenai/disturb-free
https://sites.google.com/view/disturb-free
https://sites.google.com/view/disturb-free

Stage Reward Initial Frames Aux Task SR (%) SRwoD (%)

I r scratch 20M None (Original) 66.3 32.1
I r scratch 20M None (New) 74.7 32.2
I r scratch 20M CPC|A [25, 104] 76.5 31.6
I r scratch 20M Inv. Dyn. [68, 104] 78.3 34.3
I r scratch 20M Disturb (Ours) 79.6 34.4
I r scratch 45M None (New) 84.1 35.8
I r scratch 45M CPC|A 82.4 36.7
I r scratch 45M Inv. Dyn. 69.3 28.7
I r scratch 45M Disturb 84.0 36.7
I r

0 scratch 45M None (New) 18.4 10.1
I r

0 scratch 45M CPC|A 17.9 10.4
I r

0 scratch 45M Inv. Dyn. 31.2 18.1
I r

0 scratch 45M Disturb 1.4 0.6
PPO-Lagrangian [76] (�0 = 1.0) 45M None (New) 33.3 15.6
PPO-Lagrangian (�0 = 15.0) 45M None (New) 0.0 0.0

II r
0 finetune 20M+25M None (New) 80.8 49.0

II r
0 finetune 20M+25M CPC|A 79.6 47.5

II r
0 finetune 20M+25M Inv. Dyn. 80.9 48.8

II r
0 finetune 20M+25M Disturb 81.7 49.4

Table 4. Main results on testing scenes with seen objects using the large action space Alarge . Each method is labeled by its stage
in our curriculum (Fig. 3.4), the reward it received (r for original reward; r0 for new reward), the weight initialization (from scratch or
fine-tuned), number of training frames, and what auxiliary task it used. For none auxiliary task, “original” refers to the original baseline,
and “new” refers to our improved variant. Results are averaged over 5 random seeds.

Row Action Space Reward Initial Aux Task SR (%) SRwoD (%)

1 Asmall r scratch None (Original) 55.8 12.3
2 Asmall r scratch None (New) 73.7 18.1
3 Asmall r scratch Disturb 70.0 16.3
4 Asmall r

0 finetune Disturb 74.2 26.2
5 Alarge r scratch None (Original) 56.4 11.9
6 Alarge r scratch None (New) 66.8 16.9
7 Alarge r scratch Disturb 72.9 17.0
8 Alarge r

0 finetune Disturb 78.5 29.7

Table 5. Large action space can increase the performance on disturbance avoidance. Asmall stands for the original action space, while
Alarge represents the augmented action space this paper adopted. The counterparts (Row 1 & 5, 2 & 6, 3 & 7, 4 & 8) are trained with same
setting except for the action space. Results are on validation set.

Figure 7. The effect of disturbance penalty coefficient �disturb

on validation scenes. The curves show the final results of fine-
tuning with disturbance prediction task after 25M steps with dif-
ferent �disturb.

Figure 8. Heatmap of the action distribution of our best agent over time. The y-axis lists all possible actions in the large action space
(Alarge). The x-axis shows the time-step from 0 to 120. The sum of all the cells in each column (time-step) is 1.0. We clip the cell value
to 0.3 for better visualization.

