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A. GCN architecture

The constructed ST-graphs Gn, ∀n ∈ {1, . . . , N}, where
N denotes the number of video clips, are fed into a GCN.
Following [1], our GCN model consists of three parts: an
encoder, propagation layers, and an aggregator.
Encoder. Node attributes si and gi are separately fed into
multilayer perceptrons (MLPs) first:

s′i = MLPs(si), ∀i ∈ Vn (1)
g′
i = MLPg(gi), ∀i ∈ Vn. (2)

Here s′i ∈ R32 and g′
i ∈ R32 are the same 32-dimensional.

si and gi can have different properties due to the one-hot
encoding of si. Therefore, it is useful to first map the node
attributes at the encoder, rather than feeding them directly
to the propagation layer. The encoded attributes are con-
catenated as x(0)

i = [g′
i, s

′
i].

Propagation Layers. In a propagation layer, the features
of each node are aggregated according to adjacencies de-
fined by the ST-graphs. Our GCN model adopts the local
extrema convolution (LEConv) [2], whose update formula
for the lth layer is defined as follows:
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for ∀i ∈ Vn, where ∂i denotes a set of indices of adjacent
nodes of i, and W

(l)
1 , W (l)

2 and W
(l)
3 denote learnable pa-

rameters. σ(·) denotes the ReLU activate function.
Aggregator. As outputs of the propagation layers, we ob-
tain node representations x

(L)
i , ∀i ∈ Vn, where L denotes

the number of propagation layers (L = 3 in our setting).
The aggregator performs a pooling operation to output a
graph-level representation. In our GCN model, in order
to explicitly learn instance-level features, we introduce an
instance-level pooling. As a result, graph-level represen-
tation zn can be obtained as the output of the following

aggregator operation:
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∀n ∈ {1, . . . , N}, where Nnu denotes a set of nodes corre-
sponding to object instance u in ST-graph n, and In denotes
a set of object instances in graph n.

B. Ablation Studies

To provide a further understanding of the proposed
method, we perform two kinds of ablation studies. First, we
investigate the effect of removing each of the three types
of node attributes: semantic labels, geometric features of
bounding boxes, and interaction with lane lines on classi-
fication performance. Second, we examine how effective
on the classification performance by alleviating the signif-
icant imbalance between the number of labeled and unla-
beled videos.

B.1. Effect of node attributes.

Table 1 shows the results of ablation studies for node at-
tributes. These results correspond to the classification per-
formance of SCL for labels of 11 Goal-oriented actions.
The top row in table 1 shows the results with three kinds
of node attributes. The second, third and forth rows show
the results without using semantic labels, geometric features
of bounding boxes (bbox features) and interaction with lane
lines (lane line features), respectively.

Without using the semantic labels, the mAP values are
not significantly different with those of SCL with all kinds
of node attributes. This indicates that distinguishing be-
tween kinds of object instances has little impact on the clas-
sification performance of the goad-oriented actions. How-
ever, when recognizing other kinds of scenes including un-
labeled scenes, semantic labels in node attribute would be
possible to play an importance role. For example, Fig. 5
shows pedestrians crossing a crosswalk. To recognize this



Individual actions

Methods intersection L lane R lane L lane R lane crosswalk railroad Overall
passing L turn R turn change change branch branch passing passing merge u-turn mAP

SCL 98.3 94.1 95.8 62.6 67.3 53.4 28.4 78.0 1.2 22.2 60.0 60.1
SCL (w/o semantic) 97.9 94.8 95.8 60.5 57.3 53.8 20.6 77.8 3.5 28.7 55.1 58.7

SCL (w/o bbox) 98.2 92.5 94.5 55.0 53.0 55.2 22.9 73.2 1.2 23.5 30.2 54.5
SCL (w/o lane) 95.8 92.8 93.5 50.3 45.6 25.2 13.0 58.1 1.2 10.9 52.0 48.9

Table 1. Comparison of classification performance of SCL when removing each of the three kinds of node attributes. The top row shows the
results with three kinds of node attributes. The second, third and forth rows show the results without using semantic labels (w/o semantic),
geometric features of bounding boxes (w/o bbox) and interaction with lane lines (w/o lane), respectively.

scenes, it is important to distinguish pedestrians from vehi-
cles.

When the box features are not taken into account, the
mAP values largely drop. We consider that this is because
without the bounding box information, it cannot accurately
track moves of object instances. However, the performance
degradation is less than the case without lane line features.
We believe that this is because relative positions between
object instances, which are given from a ST-graph, can also
be used to track moves of object instances. As a result, the
performance degradation may have been reduced compared
to the case without lane line features.

Finally, when the lane line features were not included in
node attributes, the performance degradation was greatest
in the three cases. We consider the reason for this is that the
lane line features cannot be substituted for other features. In
fact, the AP values of individual actions significantly influ-
enced by lane lines (L/R lane change, L/R lane branch and
merge) significantly dropped when lane line features were
not used.
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Figure 1. Change in classification performance of the proposed
method with SCL when varying α.

B.2. Varying weights in the loss function.

Since it is much easier to collect unlabeled videos than to
collect labeled videos, the number of unlabeled data is much
more than that of labeled data in many cases. If the focus
is solely on improving the classification performance, this
imbalance can have a negative impact on the performance.
A straightforward approach to alleviate the imbalance is to
introduce weights into the loss function. Therefore, in this
section, we investigate how much the classification perfor-
mance is improved when reducing the weight of unlabeled
video. The loss function with explicitly introduced weights
is
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where

αn =

{
1 (if n is a labeled data),
α (if n is an unlabeled data).

(6)

Here, α controls the strength of the effect of unlabeled
videos. When α = 1, Eq. 5 is equivalent to Eq. 8 in the
main text.

Figure 1 shows overall mAP values for labels of 11 Goal-
oriented actions when α = 1, 0.5 and 0.25. As can be seen,
although the mAP values are highest at α = 0.5 in most
cases, the difference is slight. The smaller the number of la-
beled videos, the larger the difference between the number
of labeled and unlabeled videos. However, even the number
of labeled videos was very small, the effect of the introduc-
tion of weights was not able to be confirmed. Therefore, in
the other experiments in this paper, the value of α was fixed
at 1.

C. Query-Retrieval Examples of Unlabeled
Videos

In this Appendix, we present query-retrieval examples to
qualitatively evaluate video-to-video distances learned by
the proposed methods. As described in Sec. 4.3 of the main
text, we chose a query video from unlabeled videos in the
validation set and searched the nearest neighbor video on
the query video in the embedding space learned by each



method. The nearest neighbor video was found from all
videos including both labeled and unlabeled videos in the
train set. The distances were measured using cosine similar-
ities between feature vectors output from the GCN. In Figs
2-13, the remaining samples, which could not be included
in the main text due to space limitations, are presented.

In addition, we present average SOIA distances between
query videos and corresponding top-1 retrieved videos in
Table 2. As can been seen, retrieved videos by using SCL
have the smallest average SOIA distance to the correspond-
ing query videos.

Methods Average SOIA distances (×104)
SCL 8.68
GCL 9.83
FSL 11.69

Table 2. Average SOIA distance between query videos and corre-
sponding top-1 retrieved videos.



Figure 2. Five frames extracted at equal interval from query and retrieved videos. The top row shows a query video, and the second, third
and forth rows show top-1 retrieved videos obtained from the proposed methods with SCL, GCL and FSL, respectively. In the query video,
the ego-vehicle is on a busy road. The second row of video similarly shows a crowded driving scene. Note that the proposed methods
primarily focus on the relationship between object instances detected in video and do not consider environmental conditions such as road
conditions, surrounding buildings and nature.
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