
A. Appendix

A.1. Computational Cost of Compression

We justify our claim that our network compression func-
tions f(!, �) can be computed in real-time. Consider a net-
work layer with weights !l. The computational cost of a
forward pass is O(|!l|L), where L is the spatial dimension
(in the case of a 2D convolution, L = HW , where H, W
are the height and width of the output buffer). In the LCS+L
algorithm, the cost of computing !⇤ is O(|!l|), which is far
less than the cost of a forward pass. In the case of LCS+P,
no computation is needed. Similarly, the cost of computing
�(↵) is O(1).

Now, consider the cost of computing f(!⇤(↵), �(↵)).
Our unstructured sparsity method takes O(|!l|) for each
layer (to calculate the threshold, then discard parameters
below the threshold). Our structured sparsity method takes
O(1) for each layer, since we only need to mark each layer
with the number of filters to ignore. Since most inference
libraries support tensor slicing operations, we can simply
pass a subset of the filters to the underlying matrix multipli-
cation or convolution. Our quantization method [12] takes
O(|!l|) for each layer (to calculate the affine transform pa-
rameters and apply them). In all cases, the complexity of
computing f(!⇤(↵), �(↵)) is at least L times lower than
the cost of the convolutional forward passes, meaning our
compression methods can be considered real-time.

A.2. Overhead Calculation

Unstructured Sparsity: In this setting, we prune indi-
vidual network weights. As such, the maximum number
of compressed network configurations is determined by the
layer with the largest number of parameters. Let L denote
the number of parameters in a given model’s largest layer
and [0, s] a compression sparsity range. Then the maximum
number of configurations is given by bLsc. In this setting,
the number of pre-calibrated BatchNorm parameters that we
need to store do not vary for each configuration. Conse-
quently, the total number of additional parameters that must
be stored is B(L�1) where B is the total number of Batch-
Norm parameters in the uncompressed model (note that we
subtract 1 from L since storing an uncompressed model re-
quires storing one set of BatchNorm parameters anyway).
Hence, enabling compression at every possible configura-
tion would incur a total overhead of

✓
100B(L � 1)

T

◆
%, (1)

where T is the total number of model parameters.
Structured Sparsity: Let M denote the width of the

widest layer of a given model, [w, 1] a compression width
factor range, and B the total number of BatchNorm param-
eters. Then L = bM(1 � w)c gives the maximum num-

Figure 8: Analysis of the mean absolute difference be-
tween observed batch-wise means µ̂ and stored BatchNorm
means µ during testing for cPreResNet models trained with
Discrete and Sandwich. (a)-(b): The distribution of
|µ � µ̂| across all layers. (c)-(d): The average value of
|µ � µ̂| for each individual BatchNorm layer. (e)-(f): The
correlation between the average of |µ�µ̂| and test set error.

ber of compressed network configurations obtainable after
channel pruning. For each ` 2 {1, . . . , L}, pruning ` chan-
nels from the widest layer corresponds to compressing the
network with a width factor of 1 � `/M . Hence, for each
compressed network configuration, storing pre-calibrated
BatchNorm statistics would require storing an additional
B(1 � `/M) parameters. To enable compression at every
possible configuration would therefore require storing a to-
tal of

PL
`=1 B(1� `/M) additional parameters, incurring a

total overhead of

100B

T

LX

`=1

(1 � `/M)

!
%, (2)

where T is the total number of model parameters.

A.3. Further BatchNorm Analysis

In Figure 3, we analyzed the inaccuracies of BatchNorm
statistics for models trained with unstructured sparsity. We
show a similar analysis for the case of Sandwich and
Discrete in Figure 8. We show the case of quantization
in Figure 9.

A.4. Linear Subspace Analysis

In Figure 10, we provide additional experimental evi-
dence that our linear subspace method (LCS+L) trains a
subspace specialized for high-accuracy at one end and high-
efficiency at the other end. We plot the validation accuracy
along our subspace, as well as the validation accuracy along

Figure 9: Analysis of the mean absolute difference between
observed batch-wise means µ̂ and stored BatchNorm means
µ during testing for cPreResNet models trained with dif-
ferent quantization bit widths. (a)-(b): The distribution of
|µ � µ̂| across all layers. (c)-(d): The average value of
|µ � µ̂| for each individual BatchNorm layer. (e)-(f): The
correlation between the average of |µ�µ̂| and test set error.

Figure 10: Standard evaluation of a linear subspace
with network f(!⇤(↵), �(↵)) (Learned line), and evalu-
ation when evaluating with reversed compression levels,
f(!⇤(↵), �(1 � ↵)) (Reversed line).

our subspace when compressing with f̃(!⇤(↵), �(↵)) ⌘

f(!⇤(↵), �(1 � ↵)). In other words, the weights that were
trained for low compression levels are evaluated with high
compression levels, and vice versa. We see that this leads
to a large drop in accuracy, confirming that our method has
conditioned one side of the line to achieve high accuracy at
high sparsities, and the other side of the line to achieve high
accuracy at low sparsities.

Table 3: Our baseline models’ (with BatchNorm) accura-
cies. cPreResNet20 is trained on CIFAR-10 and all other
models on ImageNet.

Model BatchNorm Baseline Accuracy (%)
cPreResNet20 91.69

ResNet18 70.72
VGG19 62.21

MnasNet-B1 72.58
MobileNetV2 70.03

MobileNetV3-Small 66.5
MobileNetV3-Large 73.09

DeiT-Ti 72.7
DeiT-Ti + Distillation 73.1

DeiT-S 80.3
CaiT-XXS 76.02

A.5. Global Model Details

Our CNNs warm up to an initial learning rate of 0.1
(0.045 for MobileNetV2) over 5 epochs, which then de-
cays to 0 over 85 epochs (or 195 for cPreResNet20) using
a cosine schedule. We use a batch size of 128 on a single
GPU for cPreResNet20 and ResNet18. We use the version
of VGG19 provided by [16]. This implementation modifies
VGG19 slightly by adding BatchNorm layers and removing
the last two fully connected layers. For VGG19, we use a
batch size of 256 with 4 GPUs. We train MnasNet, Mo-
bileNetV2, MobileNetV3-Small, and MobileNetV3-Large
with a batch size of 128 using two GPUs. We train trans-
former models using a batch size of 1024 with 8 GPUs. For
cPreResNet20, VGG19, and ResNet18, we use a weight de-
cay of 5 ⇥ 10�4. For MobileNetV2, we use a weight decay
of 4 ⇥ 10�5, and 10�5 for MnasNet, MobileNetV3-Small,
and MobileNetV3-Large.

A.6. Unstructured Sparsity Details

It is typical to include a warmup phase when training
models with TopK sparsity [32]. In our baselines in Sec-
tion 4.1, we increase the sparsity level from 0% to its final
value over the first 80% of training epochs. For our method,
sparsity values fall within a range, so there is no single tar-
get sparsity value to warm up to.

For our point method (LCS+P), we simply train for the
first 80% of training with the lowest sparsity value in our
sparsity range. We finish training by sampling uniformly
between the lowest and highest sparsity levels.

For our line method (LCS+L), our choice of sparsity
level is tied to our choice of weight-space parameters
through ↵. We implement our warmup by simply adjust-
ing �(↵) to apply less sparsity early in training, warming
up to our final sparsity rates over the first 80% of training.

For transformer models in particular, our LCS+P train-

ing resembles our LCS+L method whereby �(↵) applies
less sparsity early in training and gradually warms up to our
final sparsity rates over a fraction of the training epochs.
Moreover, we do not apply sparsity to the patch embedding
layer.

In detail, let ↵min and ↵max correspond to our minimum
and maximum alpha values (for example, for ResNet18
in Section 4.1, ↵min = 0.005, and ↵max = 0.05). As
motivated in Section 3.3, we bias sampling of ↵ towards
the endpoints of our line. We set ↵ = [↵min] with
25% probability, ↵ = [↵max] with 25% probability, and
↵ = [U(↵min , ↵max)] with 50% probability, where U(a, b)
samples uniformly in the range [a, b]. To warm up our spar-
sity rates, we choose

d = max (1 � c/t, 0) (3)
�(↵) = (1 � ↵)(1 � d), (4)

where c is the current iteration number, and t is the total
number of iterations in the first 80% of training. At the be-
ginning of training, d = 1, and �(↵) = 0, corresponding to
a sparsity level of 0 for all values of ↵. Once 80% of train-
ing is finished, d = 0, and �(↵) = 1 � ↵ for the remainder
of training. This corresponds to our final sparsity range.

Our methods use GroupNorm in the unstructured setting.
For cPreResNet20, ResNet18, and VGG19, we set the num-
ber of groups to g = 32 (we set g = c for the first few
layers of cPreResNet20, because it has fewer than 32 chan-
nels). For MnasNet, MobileNetV2, MobileNetV3-Small,
and MobileNetV3-Large, we use g = 8. Transformer mod-
els use LayerNorm (equivalent to g = 1).

A.7. Structured Sparsity Details

When training our method with a line in the structured
sparsity setting, we do not use two sets of weights (e.g., !1

and !2, Section 3.1) for convolutional filters. Instead, we
only use two sets of weights for affine transforms in Group-
Norm [28] layers. For the convolutional filters, we instead
use a single set of weights, similar to our point formula-
tion (and similar to US [30] and NS [31]). By contrast, we
use two sets of weights for convolutional filters as well as
for affine transforms when experimenting with unstructured
sparsity (Section 4.1) and quantization (Section 4.3).

The reason for only using one set of convolutional filters
in the structured sparsity setting is that the filters themselves
are able to specialize, even without an extra copy of network
weights. Some filters are only used in larger networks, so
they can learn to identify different signals than the filters
used in all subnetworks. Note that this filter specialization
argument does not apply to our unstructured or quantized
settings.

In preliminary experiments, we found that using a single
set of weights for convolutions in our structured sparsity
experiments gave a slight improvement over using two sets

of weights (roughly 2% for cPreResNet20 [7] on CIFAR-
10 [14]). We hypothesize that this slight difference may be
attributed to the ease of learning fewer network parameters.

A.8. Quantization Details

Our method applied to quantization trains without quan-
tizing the activations for the first 80% of training, and then
adds activation quantization for the remainder of training.
Weights are quantized throughout training.

The number of groups in our GroupNorm layers is the
same as described in Appendix A.6.

A.9. Additional Results

Unstructured Sparsity: We present additional results
in the unstructured wide sparsity regime in Figure 11 and
Figure 12. For MnasNet, our ↵ range is [0.0325, 1]. For
the remaining models, our ↵ range is [0.025, 1]. All other
training details are unchanged. We find that our method
is able to produce a higher accuracy over a wider range of
sparsities than our baselines.

We also present results for vision transformer models in
the high sparsity regime in Figure 13. For these models, our
↵ range is [0.05, 0.2]. Additionally, for these models we use
a 65% warm-up phase instead of 80% as was discussed in
Appendix A.6.

We also provide a table of unstructured sparsity results
in the high sparsity regime (Table 4) and the wider sparsity
regime (Table 5), showing memory usage and FLOPS.

Additional results on lightweight networks in the struc-
tured sparsity setting are presented in Figure 15 and Fig-
ure 14. Our width factor ranges for MnasNet, Mo-
bileNetV2, MobileNetV3-Small, and MobileNetV3-Large
are [0.5, 1], [0.55, 1], [0.57, 1], and [0.4427, 1], respectively.
Our method yields a better accuracy-efficiency trade-off for
a wider range of sparsity levels.

Quantization: We present quantization results for
ResNet18 in Figure 16. We find that our models approach
the accuracy of models trained at a single bit width, and our
models generalize better to other bit widths.

We also provide a table of quantization results in Table 6,
showing memory usage of the models.

Figure 11: Our method for unstructured sparsity using
a linear subspace (LCS+L+GN) and a point subspace
(LCS+P+GN) compared to networks trained for a particular
TopK target.

Table 4: Results for unstructured sparsity in the high spar-
sity regime. Note that models of a particular architecture
and sparsity level all have the same runtime characteristics
(memory and FLOPS), so we only report one value. Run-
time was not measured because it requires specialized hard-
ware. So, we follow the standard practice of only reporting
memory and flops. Memory consumption refers to the size
of nonzero model weights in the currently executing model.

cPreResNet20
(CIFAR-10)

Sparsity (%) 95.66 96.15 96.64 97.14 97.63 98.12
FLOPS (⇥106) 1.46 1.29 1.13 0.96 0.79 0.63
Memory (MB) 0.04 0.03 0.03 0.02 0.02 0.02

Acc (LCS+P+GN) 70.18 69.22 67.74 63.78 54.91 24.92
Acc (LCS+L+GN) 75.53 72.30 67.02 52.86 39.63 34.12
Acc (TopK=0.04) 14.83 12.83 10.8 9.66 10.01 9.79
Acc (TopK=0.02) 10.25 10.53 78.7 10.56 10.05 10.09
Acc (TopK=0.01) 10.02 9.97 9.96 10.64 59.2 10.79

Acc (TopK=0.005) 10.0 10.08 9.81 10.03 10.0 41.44

ResNet18
(ImageNet)

Sparsity (%) 92.67 93.15 93.62 94.1 94.58 95.06
FLOPS (⇥106) 169.42 160.94 152.46 143.98 135.51 127.03
Memory (MB) 3.42 3.2 2.98 2.76 2.53 2.31

Acc (LCS+P+GN) 51.5 51.1 50.37 48.62 44.8 30.69
Acc (LCS+L+GN) 58.63 56.96 54.70 51.02 44.87 39.41
Acc (TopK=0.04) 5.96 0.9 0.18 0.11 0.1 0.1
Acc (TopK=0.02) 24.66 45.37 59.92 3.84 0.1 0.11
Acc (TopK=0.01) 0.12 0.1 0.1 0.11 53.95 0.11

Acc (TopK=0.005) 0.1 0.12 0.11 0.1 0.11 46.35

Figure 12: Our method for unstructured sparsity using
a linear subspace (LCS+L+GN) and a point subspace
(LCS+P+GN) compared to networks trained for a particular
TopK target.

Figure 13: Our method for unstructured sparsity using
a linear subspace (LCS+L+GN) and a point subspace
(LCS+P+GN) compared to networks trained for a particular
TopK target.

Figure 14: Our method for structured sparsity using a linear
subspace (LCS+L+IN) and a point subspace (LCS+P+IN),
compared to Sandwich and Discrete.

Figure 15: Our method for structured sparsity using a linear
subspace (LCS+L+IN) and a point subspace (LCS+P+IN),
compared to Sandwich and Discrete.

Figure 16: Our method for quantization using a linear sub-
space (LCS+L+GN) and a point subspace (LCS+P+GN)
compared to networks trained for a particular bit width tar-
get.

Table 5: Results for unstructured sparsity in the wide spar-
sity regime. Note that models of a particular architecture
and sparsity level all have the same runtime characteris-
tics (memory and FLOPS), so we only report one value.
Runtime was not measured, because it requires specialized
hardware (so most unstructured pruning works report mem-
ory and flops). Memory consumption refers to the size of
nonzero model weights in the currently executing model.

cPreResNet20
(CIFAR-10)

Sparsity (%) 0.0 49.31 86.29 91.22 93.68 96.15
FLOPS (⇥106) 33.75 17.11 4.62 2.96 2.13 1.29
Memory (MB) 0.87 0.44 0.12 0.08 0.05 0.03

Acc (LCS+P+GN) 89.64 89.34 82.34 75.24 67.55 47.1
Acc (LCS+L+GN) 86.65 85.45 80.78 76.27 71.22 68.78
Acc (TopK=0.9) 91.66 83.17 10.54 10.0 9.76 10.0
Acc (TopK=0.5) 91.16 91.17 10.64 10.14 10.0 10.0
Acc (TopK=0.1) 40.74 40.74 78.56 39.54 11.67 10.26

Acc (TopK=0.025) 9.64 9.64 10.65 10.0 9.98 82.15

ResNet18
(ImageNet)

Sparsity (%) 0.0 47.77 83.59 88.37 90.76 93.15
FLOPS (⇥106) 1814.1 966.32 330.49 245.72 203.33 160.94
Memory (MB) 46.72 24.4 7.66 5.43 4.32 3.2

Acc (LCS+P+GN) 69.25 69.12 64.53 60.36 55.58 41.48
Acc (LCS+L+GN) 66.94 66.49 63.20 60.96 58.44 56.83
Acc (TopK=0.9) 70.57 63.17 0.1 0.1 0.1 0.1
Acc (TopK=0.5) 70.15 70.15 0.24 0.17 0.1 0.12
Acc (TopK=0.1) 58.21 58.21 66.44 29.93 0.24 0.1

Acc (TopK=0.025) 0.12 0.12 0.13 0.17 2.64 61.33

VGG19
(ImageNet)

Sparsity (%) 0.0 48.75 85.31 90.19 92.62 95.06
FLOPS (⇥106) 19533.52 9822.65 2539.51 1568.42 1082.88 597.34
Memory (MB) 82.12 42.09 12.06 8.06 6.06 4.06

Acc (LCS+P+GN) 70.0 69.45 62.11 55.62 48.58 25.87
Acc (LCS+L+GN) 65.64 64.76 59.93 56.80 51.89 53.15

Acc (TopK=0.9) 61.72 56.67 0.1 0.0 0.0 0.1
Acc (TopK=0.5) 61.07 61.07 0.15 0.09 0.06 0.1
Acc (TopK=0.1) 7.91 7.91 50.13 16.8 0.13 0.09

Acc (TopK=0.025) 0.09 0.09 0.1 0.16 3.91 46.66

Table 6: Results for quantization. Note that models of a
particular architecture and quantization bit width all use
the same memory, so we only report one value. Runtime
was not measured, because it requires specialized hardware.
Memory consumption refers to the size of model weights in
the currently executing model.

Bit Widths 8 7 6 5 4 3
Memory (MB) 0.22 0.19 0.17 0.14 0.11 0.08

cPreResNet20
(CIFAR-10)

Acc (LCS+P+GN) 89.97 90.0 89.88 89.26 86.25 65.26
Acc (LCS+L+GN) 87.20 87.86 87.86 87.40 84.59 75.86

Acc (Bit Width=8) 91.36 91.02 90.47 87.98 65.91 16.65
Acc (Bit Width=6) 91.07 90.89 91.26 87.12 63.1 18.78
Acc (Bit Width=4) 84.93 84.65 84.77 82.37 88.22 25.19
Acc (Bit Width=3) 55.71 55.56 57.01 55.66 44.83 73.89

ResNet18
(ImageNet)

Memory (MB) 11.69 10.23 8.77 7.31 5.84 4.38
Acc (LCS+P+GN) 63.59 63.51 63.15 61.82 55.89 5.48
Acc (LCS+L+GN) 66.72 66.30 64.80 61.84 56.96 44.63

Acc (Bit Width=8) 70.36 69.2 67.18 41.67 0.54 0.08
Acc (Bit Width=6) 66.8 66.26 69.17 44.0 0.43 0.1
Acc (Bit Width=4) 9.82 9.57 8.57 4.84 59.39 0.1
Acc (Bit Width=3) 0.1 0.12 0.09 0.1 0.12 25.61

VGG19
(ImageNet)

Memory (MB) 20.542 17.974 15.406 12.839 10.271 7.703
Acc (LCS+P+GN) 57.83 57.74 57.24 55.64 47.11 0.25
Acc (LCS+L+GN) 64.38 63.89 61.95 57.72 50.28 31.85

Acc (Bit Width=8) 60.85 59.32 56.13 39.73 0.3 0.09
Acc (Bit Width=6) 56.52 55.35 59.89 23.24 0.16 0.1
Acc (Bit Width=4) 0.13 0.13 0.14 0.11 51.33 0.1
Acc (Bit Width=3) 0.12 0.1 0.1 0.12 0.09 20.72

