
A. Connection between Lipschitz Constant and
Reconstruction Error

For the sake of completeness, we present the derivation
of Eq. (1) from Appendix C in [30]. We consider the fol-
lowing two forward mappings:

z = f(x),

zδ = fδ(x) := z + δz,

where f is an analytically exact computation, whereas fδ
is a practical floating-point inexact computation. Similarly,
we consider the following two inverse mappings:

xδ1 = f−1(zδ),

xδ2 = f−1δ (zδ) := xδ1 + δx.

The δz and δx are numerical errors in the mapping through
fδ and f−1δ . By the definition of the Lipschitz continuous,
we obtain the following:∥∥f−1(z)− f−1(zδ)

∥∥
‖z− zδ‖

=
‖x− xδ1‖
‖z− zδ‖

≤ Lip(f−1)

⇔ ‖x− xδ1‖ = Lip(f−1) ‖z− zδ‖ = Lip(f−1) ‖δz‖ .

We now consider the reconstruction error with fδ and f−1δ :∥∥x− f−1δ (fδ(x))
∥∥ = ‖x− xδ2‖

= ‖x− (xδ1 + δx)‖
≤ ‖x− xδ1‖+ ‖δx‖
= Lip(f−1) ‖δz‖+ ‖δx‖ .

While the reconstruction error is zero in the ideal case using
f and f−1, the upper bound on the reconstruction error is
given above when we consider fδ and f−1δ to account for
the numeral error caused by the large Lipschitz coefficients
in practice.

B. Controlled Experiments of Penalty in La-
tent Space.

We show experimentally that penalty ξ in the latent
space increases the reconstruction error. Letting R′(x) =∥∥x− f−1(ẑ))

∥∥ and ẑ = z+ξ′ z
‖z‖ with z = f(x), we mea-

sured R′(x) for synthetically generated ξ′ in the range of
(−11, 11) with 0.2 increments. When ξ′ > 0, ẑ is shifted
further away from the origin in the latent space than z. Con-
versely, when ξ′ < 0, ẑ is shifted closer to the origin. We
used the Glow model trained on the CIFAR-10’s training
dataset and tested 1024 samples randomly selected from the
test dataset of CIFAR-10, which thus corresponds to the In-
Dist examples. As shown in Fig. 5 (left), the degree of the
reconstruction error is proportional to the intensity of the
penalty, regardless of the sign of ξ′. As a case of OOD, we
also measured the same for the test samples of Celeb A, and
similar results were obtained (Fig. 5 (right)).

Figure 5: The effects of penalty in latent space. The x-axis
is the intensity of penalty (ξ′) and the y-axis is penalized
reconstruction error (R′). Each line corresponds to each
example. For both figures, In-Dist samples used to train the
Glow model are from CIFAR-10. The OOD samples are
from CIFAR-10’s test dataset on the left figure and are from
CelebA on the right figure.

C. Experimental Setup
C.1. OOD datasets

C.1.1 Different datasets from In-Dist

We use CelebA [66], TinyImageNet (TIN) [32], and LSUN
[67]as OOD datasets. The CelebA dataset contains various
face images, from each of which we cut out a 148 × 148
centered area and re-scale them to the size of each In-Dist
dataset. The TIN is also used as OOD only when the In-
Dist is C-10, re-scaling its images to 32 × 32. For LSUN,
we cut out squares with a length that matches the shorter
of the height or width of the original image, followed by
re-scaling to 32× 32 for C-10 and 64× 64 for TIN.

C.1.2 Noise images

We control the noise complexity by following [15]. Specif-
ically, noise images with the same size as In-Dist are sam-
pled from uniform random, average-pooling is applied to
them, and then they are resized back to the original size.
The complexity is controlled by the pooling size, κ. The
images become most complex when κ = 1 (i.e., no pool-
ing) and become simpler as κ is increased. Treating images
with different κ as separate datasets, we refer to them as
Noise-κ.

C.2. Classifiers

The archtecture of classifier we used for the experi-
ments on CIFAR-10 and TinyImageNet is WideResNet 28-
10 (WRN 28-10) [72], and the one on ILSVRC2012 is
ResNet-50 v2 [73]. These classifiers are used for gener-
ating adversarial examples and also for the classifier-based
comparison methods as described in Section 5.2. The clas-
sification accuracies are 95.949 %, 66.450 %, and 67.628
% on the test datasets of C-10, TIN, ILSVRC2012, respec-
tively (Table 4).



Table 4: Classification accuracies (%) for adversarial examples. Results for no attack are evaluated with the whole test
dataset for each. Results for attacks are evaluated with 1024 adversarial examples we generated based on 1024 normal
samples chosen at random from each test dataset.

Dataset Classifier no attack PGD-2 PGD-8 CW-0 CW-10

CIFAR-10 WRN-28-10 95.949 5.56 0.0 0.0 0.0
TinyImageNet WRN-28-10 66.450 2.92 1.95 0.0 0.0
ILSVRC2012 ResNet-50 v2 67.628 0.0 0.0 0.0 0.0

C.3. Adversarial Examples

C.3.1 Attack methods

Let C(·) be a DNN classifier where Ci(x) denotes logit of
class label i for an image x ∈ [0, 1]d, represented in the d
dimension normalized [0,1] space. The predicted label is
given as ypred = arg max

i
Ci(x). Using a targeted classifier

C, we mount untargeted attacks with the two methods, that
is, we attempt to generate adversarial examples xadv to be
labeled as ytarget = arg max

i6=ytrue

Ci(x), where ytrue is the orig-

inal label for x. In PGD, xadv is searched within a hyper-
cube around x with an edge length of 2ε, which is written
as

xadv = min
x∗

Lpgd(x∗) s.t. ‖x∗ − x‖∞ ≤ ε (7)

where

Lpgd(x∗) := Cytrue(x
∗)− Cytarget(x

∗) (8)

and ε is given as a hyper-parameter. The CW attack is for-
malized as

xadv = min
x∗

λLcw(x∗) + ‖x∗ − x‖22 (9)

where

Lcw(x∗) := max(Cytarget(x
∗)− Cytrue(x

∗),−k), (10)

k is a hyper-parameter called confidence, and λ is a learn-
able coefficient. Defining a vector of adversarial perturba-
tion ∆x := xadv − x, ‖∆x‖∞ in PGD is bounded by ε,
whereas ‖∆x‖2 in CW is not. Thus, while the artifacts may
appear on images when k becomes larger, CW attack al-
ways reaches 100% successes in principle.

C.3.2 Generation of adversarial examples

For PGD attacks, the step size is 1
255 and the mini-batch

size is 128 on all three datasets. The numbers of projec-
tion iteration for PGD-2 are 1000 on C-10 and TIN and 100
on ILSVRC2012, and those for PGD-8 are 100 on all three
datasets. For CW attacks, our code is based on the one used

in [70]. The maximum numbers of iterations are 10000
on C-10 and 1000 on TIN and ILSVRC2012. The num-
ber of times we perform binary search to find the optimal
tradeoff-constant between L2 distance and confidence is set
to 10. The initial tradeoff-constant to use to tune the rela-
tive importance of L2 distance and confidence is set to 1e-3.
The learning rate for attacking is 1e-2 and the mini-batch
size is 256 on C-10, 128 on TIN, and 64 on ILSVRC2012.
The classification accuracies before and after attacking are
shown in Table 4.

C.4. Glow

Architecture. The architecture of the Glow mainly con-
sists of two parameters: the depth of flowK and the number
of levels L. The set of affine coupling and 1 × 1 convolu-
tion are performed K times, followed by the factoring-out
operation [25], and this sequence is repeated L times. We
set K = 32 and L = 3 for C-10, K = 48 and L = 4
for TIN, and K = 64 and L = 5 for ILSVRC2012. Re-
fer to [74, 25] and our experimental code for more de-
tails.4 Many flow models including Glow employs affine
coupling layer [25] to implement fi. Splitting the input x
into two halves as [xa,xb] = x, a coupling is performed
as [ha,hb] = fi(x) = [xa,xb � s(xa) + t(xa)] where
� denotes the element-wise product and s and t are the
convolutional neural networks optimized through the train-
ing. Its inverse can be easily computed as xa = ha and
xb = (hb − t(xa))� s(xa), where � denotes the element-
wise division, and log |det Jfi(x)| can be obtained as just
log |s(xa)|.

Restricted affine scaling. In order to suppress the Lips-
chitz constants of the transformations and further improve
stability, we restrict the affine scaling to (0.5, 1), following
[30]. Specifically, we replace s(xa) with g(s(xa)) and use
a half-sigmoid function as g(s) = σ(s)/2 + 0.5 where σ is
the sigmoid function.

Training settings. We trained 45100 iterations for C-10
and TIN and 70100 iterations for ImaneNet, using the Adam

4We implemented Glow model based on [75].



optimizer [76] with β1 = 0.9 and β2 = 0.999. The batch
size is 256 for C-1, 16 for TIN, and 4 for ILSVRC2012.
The learning rate for the first 5100 iterations is set to 1e-
4, and 5e-5 for the rest. We applied the data augmenta-
tion of random 2× 2 translation and horizontal flip on C-10
and TIN. For ILSVRC2012, the image is first resized to be
256 in height or width, whichever is shorter, and cropped to
224× 224 at random.

C.5. Existing Methods

We compare the performance of the proposed methods
to several existing methods. In the following description
for the likelihood-based methods (i.e., WAIC, LLR, and
COMP), p(x) denotes the likelihood computed with the
Glow model, the same as the one we use for our meth-
ods. We reverse the sign of score outputted from those
likelihood-based methods since we use them as scores indi-
cating being OOD examples. For the classifier-based meth-
ods (i.e., DU, FS, and PL), the classifier (C(x)) is the WRN
28-10 or ResNet-50 v2 which is the same model we used to
craft the adversarial examples in the previous section. The
comparison methods are as follows:

1. The Watanabe-Akaike Information Criterion (WAIC)
[13] measures E[log p(x)] − Var[log p(x)] with an en-
semble of five Glow models. The four of the five were
trained separately with different affine-scaling restric-
tions mentioned in Section 5.2, i.e., the function g(s)
described in Appendix C.4. The function g(s) we chose
for the four models is the following: a sigmoid function
σ(s), a half-sigmoid function σ(s)/2 + 0.5, clipping as
min(|s|, 15), and an additive conversion as g(s) = 1. In
addition to those four models, we used the background
model used in the LLR described next as a component
of the ensemble.

2. The likelihood-ratio test (LLR) [14] measures
log p(x) − log p0(x). The p0(x) is a background
model trained using the training data with additional
random noise sampled from the Bernoulli distribution
with a probability 0.15. It thus uses two Glow models.

3. The Complexity-aware likelihood test (COMP) [15]
measures log p(x) + |B(x)|

d where B(x) is a lossless
compressor that outputs a bit string of x and its length
|B(x)| is normalized by d, the dimensionality of x. We
use a PNG compressor as B.

4. The typicality test in latent space (TTL) [13] measures
the Euclidean distance in the latent space to the clos-
est point on the Gaussian Annulus: abs(‖f(x)‖ −

√
d)

where f is the same Glow model used in our method.

5. The Maximum Softmax Probability (MSP) [1] simply
measures max(softmax(C(x)), which has been often

used as a baseline method in the previous OOD detec-
tion works.

6. The Dropout Uncertainty (DU) [47] is measured by
Monte Carlo Dropout [77], i.e., the sum of the variance
of each component of softmax(C(x)), computed over
30 times run with the dropout rate 0.2.

7. The Feature Squeezing (FS) [48] out-
puts L1 norm distance as the score:
‖softmax(C(x))− softmax(C(x̂))‖1 where x̂ is
generated by applying a median filter to the original
input x.

8. The Pairwise Log-Odds (PL) [49] measures how log-
its change under random noise. Defining perturbed
log-odds between classes i and j as Gij(x, ε) :=
Cij(x + ε)− Cij(x) where Cij(x) := Cj(x)− Ci(x),
the score is defined as maxi6=ypredE[Giypred(x, ε)] where
ypred = arg max

i
Ci(x). The noise ε is sampled from

Uniform(0, 1), and we took the expectation over 30
times run.

9. The reconstruction error in Auto-Encoder is defined as
AE(x) = ‖x− fd(fe(x)))‖2 where fe and fd are the
encoder and decoder networks, respectively. The archi-
tecture of the AE model we used and its training proce-
dure is presented in Appendix C.5.1.

C.5.1 Auto-Encoder

We use the Auto-Encoder based method as one of the com-
paring methods in our experiments on CIFAR-10 and Tiny-
ImageNet. The architecture of the Auto-Encoder we used is
designed based on DCGAN [78], which is shown in Table
5. For both datasets, we used the same architecture and ap-
plied the following settings. We used the Adam optimizer
with β1 = 0.9 and β2 = 0.999, with batch size 256. The
learning rate starts with 0.01 and exponentially decays with
rate 0.8 at every 2 epochs, and we trained for 300 epochs.
The same data augmentation as used for Glow was applied.

D. More Experimental Results
D.1. AUPR

We show the detection performance as the area under the
precision-recall curve (AUPR). Table 6 shows the results on
CIFAR-10, Table 7 shows the results on TinyImageNet, and
Table 8 shows the results on ILSVRC2012.

D.2. Effects of Coefficient of Penalty

Table 9 shows the AUROC with different λ in Eq. (4), the
coefficients of ξ. We empirically chose λ = 50 for CIFAR-
10 and λ = 100 for the other two datasets based on these
results.



Table 5: Architecture of encoder and decoder of Auto-Encoder. BNorm stands for batch normalization. Slopes of Leaky
ReLU (lReLU) are set to 0.1.

Encoder Decoder

Input: 32× 32× 3 image Input: 256-dimensional vector
3× 3 conv. 128 same padding, BNorm, ReLU Fully connected 256→ 512 (4× 4× 32), lReLU
3× 3 conv. 256 same padding, BNorm, ReLU 3× 3 deconv. 512 same padding, BNorm, ReLU
3× 3 conv. 512 same padding, BNorm, ReLU 3× 3 deconv. 256 same padding, BNorm, ReLU
Fully connected 8192→ 256 3× 3 deconv. 128 same padding, BNorm, ReLU

1× 1 conv. 128 valid padding, sigmoid

Table 6: AUPR (%) on CIFAR-10. The column labeled as ‘Avg.’ shows the averaged scores.

CelebA TIN Bed Living Tower PGD-2 PGD-8 CW-0 CW-10 Noise-1 Noise-2 Avg.

WAIC 50.24 74.29 80.70 86.54 83.69 43.88 70.07 48.26 47.20 100.0 100.0 71.35
LLR 62.59 43.00 44.81 43.81 39.83 57.83 78.54 51.87 54.06 30.82 30.71 48.90

COMP 75.37 74.88 73.32 84.95 58.80 61.18 98.49 50.95 53.68 100.0 100.0 75.60
TTL 82.49 85.58 90.68 91.60 89.88 73.82 99.99 50.57 53.90 100.0 51.04 79.05
MSP 78.16 88.74 94.58 92.19 92.74 35.79 30.69 99.15 31.63 98.82 97.40 76.35
PL 76.84 57.80 51.59 47.01 51.40 79.88 96.98 53.00 81.00 35.53 65.84 63.35
FS 76.96 82.63 80.41 80.22 78.74 91.51 75.31 83.80 94.84 81.69 90.70 83.37
DU 76.86 75.43 75.79 74.42 74.78 70.52 36.20 85.63 76.44 69.36 65.49 70.99
AE 59.61 81.63 70.36 84.71 66.37 50.37 56.71 50.04 49.96 98.74 100.0 69.86

RE (ours) 86.06 87.27 88.33 87.99 87.98 84.23 87.44 90.05 89.89 90.78 89.16 88.11
PRE (ours) 88.42 92.68 92.12 92.23 92.32 84.78 99.99 89.98 90.09 100.0 88.91 91.96

D.3. Histograms of L2 norm for partitioned latent
vector

The typicality test (TTL) failed to detect CW’s adversar-
ial examples (and some Noise datasets), while the PRE and
RE successfully did, as shown in Tables 1 and 2. The failure
of TTL is obvious from Fig. 4 showing that the distributions
of ‖z‖ for the CW’s examples (the adversarial examples
generated by CW-0) overlap those for In-Dist’s almost en-
tirely. We analyzed this failure by the following procedure.
We partitioned latent vectors z ∈ R3072 on CIFAR-10 into
two parts as [za, zb] = z where za ∈ R2688 and zb ∈ R384,
and measuring the L2 norm separately for each. 5 In Fig.
6, we show the distributions comparing the CW-0’s exam-
ple with the In-Dist’s in ‖za‖ and ‖zb‖. The distribution of
‖za‖ for the CW-0’s examples is shifted toward larger val-
ues than that for In-Dist’s. In contrast, the opposite is true
for ‖zb‖, where the distribution for the CW-0’s examples is
slightly shifted toward smaller values than that for In-Dist’s.
When we measure the L2 norm for the entire dimension of
z without partitioning, the deviation from the In-Dist ob-
served in za and zb cancels out, and as a result, ‖z‖ of CW’s
examples becomes indistinguishable from those of In-Dist
ones. This is exactly the case described in Section 3.2 where

5This partitioning is based on the factoring-out operation [25] used in
affine coupling-type NFs, including Glow. The inputs with 3072 dimen-
sion are partitioned this way when factoring-out is applied three times.

the typicality test fails.

Figure 6: Histograms for L2 norm for za ∈ R2688 (left) and
zb ∈ R384 (right). Red is the distribution for the OOD: CW-
0’s examples on CIFAR-10, and blue is In-Dist’s examples.

D.4. Histograms for Reconstruction Error without
Penalty, R

Fig. 7 shows the histograms of reconstruction error with-
out penalty in the latent space, R in correspondence with
Fig. 3.

E. Analysis with Chernoff Tail Bound

Let z ∈ Rd be a random vector sampled from a standard
Gaussian. Then, the following is obtained from Markov’s



Table 7: AUPR (%) on TinyImageNet. The column labeled as ‘Avg.’ shows the averaged scores.

CelebA Bed Living Tower PGD-2 PGD-8 CW-0 CW-10 Noise-1 Noise-2 Avg.

WAIC 32.54 59.41 63.02 63.81 42.89 44.77 48.84 47.00 100.0 100.0 60.23
LLR 90.81 58.27 58.43 70.46 56.81 94.75 51.35 53.37 70.30 30.69 63.52

COMP 50.31 50.92 62.30 46.43 56.49 94.86 50.75 52.01 100.0 100.0 66.41
TTL 96.27 99.03 99.45 98.90 78.61 100.0 50.96 55.19 100.0 100.0 87.84
MSP 79.60 81.29 77.42 76.76 31.44 30.69 76.13 30.93 79.53 83.20 64.70
PL 46.71 34.51 39.27 38.11 93.26 99.99 41.59 95.95 33.40 39.33 56.21
FS 36.83 36.23 36.90 35.77 78.27 39.19 46.41 86.10 41.45 45.52 48.27
DU 44.73 41.07 38.91 37.41 50.20 68.04 48.88 49.82 44.56 34.93 45.86
AE 33.24 34.50 38.11 35.24 49.64 50.63 49.98 49.95 85.97 56.33 48.86

RE (ours) 46.42 56.06 56.28 57.51 87.98 88.71 92.04 93.10 94.12 93.81 76.60
PRE (ours) 70.62 92.51 94.96 91.81 88.41 99.90 91.83 92.90 100.0 100.0 92.29

Table 8: AUPR (%) on ILSVRC2012 with our method. The column labeled as ‘Avg.’ shows the averaged scores.

CelebA PGD-2 PGD-8 CW-0 CW-10 Noise-2 Noise-32 Avg.

RE 90.04 88.59 90.35 90.52 91.08 91.42 91.45 90.49
PRE 90.04 88.60 90.47 90.52 91.09 91.42 91.46 90.51

Table 9: AUROC (%) with various coefficient of penalty, λ.

In-Dist CIFAR-10 TinyImageNet ILSVRC2012

λ / OOD CelebA PGD-2 CelebA PGD-2 CelebA PGD-2

0 92.53 91.66 46.68 92.86 94.65 93.96
10 93.40 92.95 79.99 94.05 94.64 93.96
50 93.62 92.23 93.13 95.13 94.56 93.93

100 93.60 92.09 95.55 95.04 94.89 94.24
500 91.94 89.21 98.41 92.53 93.02 92.36

1000 90.81 85.08 98.33 90.83 88.92 89.30

inequality:

Pr
[
‖z‖2 >

√
d(1 + ε)

]
≤ exp

(
−dε

2

8

)
, (11)

Pr
[
‖z‖2 <

√
d(1− ε)

]
≤ exp

(
−dε

2

8

)
. (12)

We refer the reader to [79], for example, for the derivation.
From the above, we obtain (6). Letting exp

(
−dε

2

8

)
= 1

2s ,

we have ε =
√

8s
dlog2(e)

≈
√

8s
d·1.4427 . By setting s = 58

(and d = 3072) which results in ε = 0.32356413, the in-
equality is obtained.

Figure 7: Histograms for reconstruction error without
penalty in the latent space. The x-axis is R.


