
Contrastive Losses Are Natural Criteria for Unsupervised Video
Summarization: Supplementary Material

Zongshang Pang
Osaka University

pangzs@is.ids.osaka-u.ac.jp

Yuta Nakashima
Osaka University

n-yuta@ids.osaka-u.ac.jp

Mayu Otani
CyberAgent, Inc.

otani-mayu@cyberagent.co.jp

Hajime Nagahara
Osaka University

nagahara@ids.osaka-u.ac.jp

1. Training Details
We have used two kinds of pre-trained features in our experiments, namely the GoogleNet [15] features for the video

summarization datasets and the quantized Inception-v3 [16] features for the Youtube8M dataset, both with 1024 dimensions.
The GoogleNet features are provided by [18] and the quantized Inception-v3 features by [1].

The model appended to the feature backbone for contrastive refinement is a stack of Transformer encoders with multi-head
attention modules [17]. There are two scenarios for our training: 1. The training with TVSum [14], SumMe [6], YouTube,
and OVP [4], which is again divided into the canonical, augmented, and transfer settings; 2. The training with a subset of
videos from Youtube8M dataset [1]. We call the training in the first scenario as Standard and the second as YT8M.

The pre-trained features are first projected into 128 dimensions for training in both scenarios using a learnable, fully
connected layer. The projected features are then fed into the Transformer encoders. The model architecture and associated
optimization details are in Table A1.

The training for the 10, 000 Youtube8M videos takes around 6 minutes for 40 epochs on a single NVIDIA RTX A6000.
The efficient training benefits from the straightforward training objective (contrastive learning), lightweight model, the low
dimensionality of the projected features, and the equal length of all the training videos (200 frames).

Table A1: Model and optimization details used for the results in the main paper.

Layers # Heads dmodel dhead dinner Optimizer LR Weight Decay Batch Size Epoch Dropout

Standard 4 1 128 64 512 Adam 0.0001 0.0001 32 (TVSum) 8 (SumMe) 40 0
YT8M 4 8 128 64 512 Adam 0.0001 0.0005 128 40 0

The ablation results for the numbers of encoder layers and attention heads are conducted on the Youtube8M videos alone,
as they are much more challenging than the videos used in the standard training, and the results are in Section 4.

2. The Full Evaluation Results for the Standard Training.
In Table 1 in the main text, we only provided Kendall’s τ and Spearman’s ρ for the canonical training setting, and we list

the full results in Tables A2 and A3. For the analysis and the comparison with previous work, please refer to Table 1 in the
main paper.

3. Hyperparameter Ablation Results.
We focus on ablating two hyperparameters: a for controlling the size of the nearest neighbor set Nt and λ1 for balancing

the alignment and uniformity losses. The ablation results are provided for when importance scores are produced by L̄align&H̄θ̂
and by L̄align&H̄θ̂&L̄uniform.

Table A2: The full results for TVSum in the standard training.

Canonical Augmented Transfer

F1 τ ρ F1 τ ρ F1 τ ρ

w.t. training L̄∗
align 56.4 0.1055 0.1389 56.4 0.1055 0.1389 54.6 0.0956 0.1251

L̄∗
align&L̄∗

uniform 58.4 0.1345 0.1776 58.4 0.1345 0.1776 56.8 0.1207 0.1589

w. training

L̄align 54.6 0.1002 0.1321 55.1 0.1029 0.136 53.0 0.0831 0.1090
L̄align&L̄uniform 58.8 0.1231 0.1625 59.9 0.1238 0.1631 57.4 0.1166 0.1529
L̄align&H̄θ̂ 53.8 0.1388 0.1827 56 0.1363 0.1792 54.3 0.1173 0.1539
L̄align&L̄uniform&H̄θ̂ 59.5 0.1609 0.2118 59.9 0.1623 0.2133 59.7 0.1405 0.1846

Table A3: The full results for SumMe in the standard training.

Canonical Augmented Transfer

F1 τ ρ F1 τ ρ F1 τ ρ

w.t. training L̄∗
align 43.5 0.0960 0.1173 43.5 0.0960 0.1173 39.4 0.0769 0.0939

L̄∗
align&L̄∗

uniform 47.2 0.0819 0.1001 46.07 0.0819 0.1001 41.7 0.0597 0.073

w. training

L̄align 46.8 0.0942 0.1151 47.1 0.0872 0.1065 41.5 0.0756 0.0924
L̄align&L̄uniform 46.7 0.0689 0.0842 48.4 0.0645 0.0788 41.1 0.0305 0.0374
L̄align&H̄θ̂ 45.2 0.0585 0.0715 45 0.059 0.0721 45.3 0.0611 0.0747
L̄align&L̄uniform&H̄θ̂ 46.8 0.0358 0.0437 45.5 0.0353 0.0431 43.9 0.0306 0.0374

3.1. L̄align & H̄θ̂

As shown in Table A4 and Fig. 1, when a becomes larger, TVSum performance begins to be unstable in terms of both
F1 and correlation coefficients, and SumMe performance is relatively more stable, but also shows a similar unstable pattern
in terms of F1. We hypothesize that when a becomes larger, the nearest neighbor set becomes increasingly noisier, making
both the alignment loss during training and the local dissimilarity metric (post-training alignment loss) for importance score
generation less meaningful due to the semantically irrelevant neighbors. For λ1, smaller values generally give better perfor-
mance when a has a reasonable value, as larger values of λ1 tend to make the uniformity loss suppress the alignment loss.
Similarly, too small λ1 will make the alignment loss suppress the uniformity loss, as we observed unstable training when
further decreasing λ1.

Table A4: The ablation results for a and λ1 with L̄align & H̄θ̂ used for importance score calculation. See the text for analysis.

Hyper-params TVSum SumMe

a λ1 F1 τ ρ F1 τ ρ

0.025

0.25 54.7 0.1286 0.1683 47.0 0.0671 0.0828
0.50 54.9 0.0936 0.1227 43.7 0.0446 0.0550
1.00 54.8 0.0717 0.0946 43.1 0.0508 0.0628
2.00 55.0 0.0743 0.0981 42.3 0.0459 0.0567

0.05

0.25 53.8 0.1240 0.1624 43.5 0.0830 0.1027
0.50 54.7 0.1189 0.1556 44.2 0.0540 0.0666
1.00 54.4 0.0841 0.1110 42.0 0.0577 0.0714
2.00 54.3 0.0764 0.1010 40.4 0.0436 0.0543

0.1

0.25 46.9 0.0498 0.0645 44.4 0.0783 0.0971
0.50 52.9 0.1263 0.1655 48.7 0.0780 0.0964
1.00 53.2 0.0829 0.1094 44.1 0.0609 0.0755
2.00 53.8 0.0689 0.0907 38.6 0.0470 0.0583

0.2

0.25 41.1 -0.0318 -0.0421 36.6 0.0639 0.0793
0.50 52.4 0.0994 0.1299 46.2 0.0816 0.1010
1.00 52.0 0.0536 0.0707 41.3 0.0630 0.0781
2.00 54.3 0.0631 0.0830 44.5 0.0622 0.0771

0.05

0.10

0.15

0.20

a
TVSum

0.
25 0.
5 1

2.
0

λ1

0.05

0.10

0.15

0.20

a

0.
25 0.
5 1

2.
0

λ1

0.
25 0.
5 1

2.
0

λ1

SumMe

0.45 0.50
F1

0.0 0.1
Kendall’s τ

0.0 0.1
Spearman’s ρ

0.40 0.45
F1

0.06 0.08
Kendall’s τ

0.06 0.08 0.10
Spearman’s ρ

Figure 1: Accompanying figure for Table A4

3.2. L̄align & H̄θ̂ & L̄uniform

As shown in Table A5, the analysis is in general similar to that made in Table A4. However, we can observe that the
performance has been obviously improved for TVSum but undermined for SumMe due to incorporating L̄uniform. We will
explain this phenomenon in Section 7.

The results in the main paper for the YT8M training were produced for TVSum with (a, λ1) = (0.05, 0.25) and for
SumMe with (a, λ1) = (0.1, 0.5), which are the best settings for the two datasets, respectively. This was done for avoiding
the effect of the hyperparameters when we ablate the different components, i.e., L̄align, H̄θ̂, and L̄uniform. The results in the
main paper for the standard training were produced with (a, λ1) = (0.1, 0.5), which is stable for both TVSum and SumMe
when only few videos are available for training.

Table A5: The ablation results for a and λ1 with L̄align & H̄θ̂ & L̄uniform used for importance score calculation. See the text
for analysis.

Hyper-params TVSum SumMe

a λ1 F1 τ ρ F1 τ ρ

0.025

0.25 58.2 0.1403 0.1842 40.2 0.0341 0.0421
0.50 57.3 0.0548 0.0716 38.7 0.0083 0.0101
1.00 55.9 -0.0058 -0.0078 40.6 -0.0191 -0.0239
2.00 54.5 -0.0087 -0.0112 40.3 -0.0069 -0.0087

0.05

0.25 58.5 0.1564 0.2050 42.7 0.0618 0.0765
0.50 57.2 0.1205 0.1577 38.7 0.0182 0.0223
1.00 55.5 0.0427 0.0563 39.7 0.0094 0.0114
2.00 54.1 0.0074 0.0098 40.1 -0.0027 -0.0034

0.1

0.25 56.0 0.0743 0.0971 42.4 0.0737 0.0914
0.50 57.8 0.1421 0.1866 43.2 0.0449 0.0553
1.00 54.7 0.0446 0.0587 41.6 0.0130 0.0160
2.00 54.7 0.0097 0.0127 41.3 -0.0142 -0.0176

0.2

0.25 50.9 -0.0267 -0.0355 41.8 0.0597 0.0740
0.50 56.4 0.1178 0.1540 46.6 0.0626 0.0775
1.00 50.7 0.0053 0.0067 39.0 0.0087 0.0109
2.00 54.7 0.0162 0.0212 41.1 -0.0064 -0.0079

0.05

0.10

0.15

0.20

a

TVSum

0.
25 0.
5 1

2.
0

λ1

0.05

0.10

0.15

0.20

a

0.
25 0.
5 1

2.
0

λ1

0.
25 0.
5 1

2.
0

λ1

SumMe

0.525 0.550 0.575
F1

0.0 0.1
Kendall’s τ

0.0 0.1 0.2
Spearman’s ρ

0.40 0.45
F1

0.00 0.05
Kendall’s τ

0.00 0.05
Spearman’s ρ

Figure 2: Accompanying figure for Table A5

4. Ablation on Model Size and Comparison with DR-DSN on Youtube8M.
In this section, we show the ablation results in Table A6 for different sizes of the Transformer encoder [17], where the

number of layers and the number of attention heads are varied. Meanwhile, we compare the results with those obtained from
DR-DSN [19] trained on the same collected Youtube8M videos, as DR-DSN has the best τ and ρ among past unsupervised
methods and is the only one that has a publicly available official implementation.

As can be observed in Table A6, the model performance is generally stable with respect to the model sizes, and we choose
4L8H as our default as reported in Section 1. Moreover, the DR-DSN has a hard time generalizing well to the test videos
when trained on the Youtube8M videos.

We also recorded the training time on Youtube8M for our model and DR-DSN to show that our training objective based
on the contrastive losses is much more efficient than DR-DSN’s reinforcement learning-based one that bootstraps online-
generated summaries. We chose DR-DSN for comparison in this regard because it is the most lightweight model (a single
layer of bi-directional LSTM) and the only one that has officially released code among all the unsupervised methods. Our
heaviest model (4L8H) only took around 10s for one pass through our Youtube8M dataset, and only took 40 epochs to
complete the training. However, DR-DSN took 140s per epoch and 100 epochs to reach the performance in Table A6. The
performance stayed stable if we kept training DR-DSN for more epochs. Both experiments were done on a single NVIDIA
RTX A6000.

Table A6: Ablation results for the model size together with comparison with DR-DSN [19] trained on the same Youtube8M
videos, where 2L2H represents “2 layers 2 heads” and the rest goes similarly. All the three components L̄align & H̄θ̂ &
L̄uniform are used with (a, λ1) = (0.05, 0.25) for both SumMe and TVSum for fair comparison with DR-DSN, which also
uses a representativeness-based training objective.

TVSum SumMe

F1 τ ρ F1 τ ρ

DR-DSN [19] 51.62 0.0594 0.0788 39.82 -0.0142 -0.0176

2L2H 58.0 0.1492 0.1953 42.9 0.0689 0.0850
2L4H 58.1 0.1445 0.1894 42.8 0.0644 0.0794
2L8H 58.8 0.1535 0.2011 44.0 0.0584 0.0722
4L2H 57.4 0.1498 0.1963 45.3 0.0627 0.0776
4L4H 58.3 0.1534 0.2009 43.1 0.0640 0.0790
4L8H 58.5 0.1564 0.2050 42.7 0.0618 0.0765

5. Comparing Different Pre-trained Features
As our method can directly compute importance scores using pre-trained features, it is also essential for it to be able to

work with different kinds of pre-trained features. To prove this, we computed and evaluated the importance scores generated
with 2D supervised features, 3D supervised features and 2D self-supervised features in Table A7.

In general, different 2D features, whether supervised or self-supervised, all deliver decent results. Differences exist but
are not huge. The conclusion made in the main text that L̄unif helps TVSum but undermines SumMe also holds for most of
the features. Based on this, we conclude that as long as the features contain decent semantic information learned from either
supervision or self-supervision, they are enough for efficient computation of the importance scores for video summarization.
The performance of these features transferred to different downstream image tasks does not necessarily generalize to our
method for video summarization, as the latter only requires reliable semantic information (quantified as dot products) to
calculate heuristic metrics for video frames. After all, it may be reasonable to say that the linear separability of these features
for image classification and transferability for object detection and semantic segmentation are hardly related to and thus
unable to benefit a task as abstract as video summarization.

However, one interesting observation is that our method does not work well with 3D supervised video features. This is un-
derstandable since these 3D features were trained to encode the information of video-level labels, thus encoding less detailed
semantic information in each frame on which our method is built. Still, such 3D features contain part of the holistic informa-
tion of the associated video and may be a good vehicle for video summarization that can benefit from such information. We
consider it interesting to incorporate 3D features into our approach and will explore it in our future work.

Table A7: Evaluation results with different pre-trained features. The results were produced under the transfer setting with
a = 0.1.

TVSum SumMe

L̄∗
align L̄∗

align & L̄∗
unif L̄∗

align L̄∗
align & L̄∗

unif

F1 τ ρ F1 τ ρ F1 τ ρ F1 τ ρ

Supervised (2D)

VGG19 [13] 50.62 0.0745 0.0971 55.91 0.1119 0.1473 45.16 0.0929 0.1151 43.28 0.0899 0.1114
GoogleNet [15] 54.67 0.0985 0.1285 57.09 0.1296 0.1699 41.89 0.0832 0.1031 40.97 0.0750 0.0929
InceptionV3 [16] 55.02 0.1093 0.1434 55.63 0.0819 0.1082 42.71 0.0878 0.1087 42.30 0.0688 0.0851
ResNet50 [10] 51.19 0.0806 0.1051 55.19 0.1073 0.1410 42.30 0.0868 0.1076 43.86 0.0737 0.0914
ResNet101 [10] 51.75 0.0829 0.1081 54.88 0.1118 0.1469 42.32 0.0911 0.1130 44.39 0.0736 0.0913
ViT-S-16 [5] 53.48 0.0691 0.0903 56.15 0.1017 0.1332 40.30 0.0652 0.0808 40.88 0.0566 0.0701
ViT-B-16 [5] 52.85 0.0670 0.0873 56.15 0.0876 0.1152 42.10 0.0694 0.0860 41.65 0.0582 0.0723
Swin-S [11] 52.05 0.0825 0.1082 57.58 0.1120 0.1475 41.18 0.0880 0.1090 41.63 0.0825 0.1022

Supervised (3D) R3D50 [7] 52.09 0.0590 0.0766 53.35 0.0667 0.0869 37.40 0.0107 0.0138 41.03 0.0150 0.0190
R3D101 [7] 49.77 0.0561 0.0727 52.15 0.0644 0.0834 33.62 0.0173 0.0216 34.96 0.0212 0.0264

Self-supervised (2D)

MoCo [9] 51.31 0.0797 0.1034 55.97 0.1062 0.1390 42.01 0.0768 0.0953 43.19 0.0711 0.0882
DINO-S-16 [3] 52.50 0.0970 0.1268 57.57 0.1200 0.1583 42.77 0.0848 0.1050 42.67 0.0737 0.0913
DINO-B-16 [3] 52.48 0.0893 0.1170 57.02 0.1147 0.1515 41.07 0.0861 0.1066 44.14 0.0679 0.0843
BEiT-B-16 [2] 49.64 0.1125 0.1468 56.34 0.1270 0.1665 36.91 0.0554 0.0686 38.48 0.0507 0.0629
MAE-B-16 [8] 50.40 0.0686 0.0892 54.58 0.1013 0.1327 40.32 0.0560 0.0695 39.46 0.0484 0.0601

6. Unstable F1 scores
We observed that F1 values could be highly unstable for TVSum. When there are zeros in the predicted importance scores,

the F1 values will be unreasonably low for TVSum but relatively stable for SumMe. This happens because when all segments
have non-zero scores, the knapsack algorithm favors selecting short segments, which is how the ground-truth summaries for
TVSum were created [18]. With such ground-truth summaries, the predicted importance scores without zero values can
already have a good starting point for the F1 value since they basically go through the same knapsack algorithm with the
short-segment bias used to create the ground-truth. Similar observations were made in [12]. Segments with zero scores will
not be selected by the knapsack algorithm and make the problem harder to solve, thus leading to low F1 values for TVSum.
The SumMe summaries are not created from the knapsack and directly come from the users. Therefore, the F1 values on
SumMe are less affected.

To make a fair comparison with previous work, which usually does not have zeros in the predicted scores, we chose to add
a small value ϵ (e.g., 0.05) to the predicted scores. However, this does not address the unstableness of the F1 values.

Let us consider another choice to avoid zero scores: exp(p − 1), where p ∈ [0, 1] is the predicted importance score for a
frame. We obtain the results in Table A8 by using these two choices without changing any other part of the method.

As can be observed in Table A8, merely shifting or scaling the importance scores without changing their relative magnitude
can lead to different F1 values for both TVSum and SumMe. At the same time, the correlation coefficients are much more
stable. Thus, we reinforced the conclusion in [12] that the F1 value is not as stable as the correlation coefficients.

Table A8: The results obtained with different strategies for avoiding zero values in the predicted importance scores. ϵ stands
for the operation p+ ϵ and exp for exp(p− 1), where p ∈ [0, 1] is the importance score for a frame.

TVSum SumMe

F τ ρ F1 τ ρ

exp ϵ exp ϵ exp ϵ exp ϵ exp ϵ exp ϵ

L̄align&H̄θ̂ 58.1 53.8 0.123 0.124 0.1612 0.1624 46 48.7 0.0776 0.078 0.0958 0.0964
L̄align&H̄θ̂&L̄uniform 59.4 58.5 0.1563 0.1564 0.2048 0.205 42.86 43.2 0.0441 0.0449 0.0544 0.0553

7. The Behavior of L̄∗
uniform on SumMe.

In the main text, we saw that L̄∗
uniform improved performance for TVSum but hurt for SumMe. We now discuss why this

happened.

Firstly, when frames with zero annotated scores (recall the 15% constraint for SumMe) have high L̄∗
align, L̄∗

uniform will
reinforce such false confidence as long as it is not low enough to almost zero out L̄∗

align. Such frames may not necessarily be
highly irrelevant and have low L̄∗

uniform to begin with because most of them, though still informative, are eliminated by the
15% constraint. As shown in Table A9, keeping the most confidence values of L̄∗

align by simple thresholding, which may help
remove false predictions of L̄∗

align, can mitigate this issue. The results in the main text are all without such thresholding for a
fair comparison with previous work.

Though the results in Table A9 show improvement for L̄∗
uniform, it is not as striking as that for TVSum in terms of τ and

ρ. Compared to TVSum videos, many videos in SumMe already contain quite consistent frames due to their slowly evolving
properties. Such slowly evolving features can be visualized by T-SNE plots shown in Fig. 4a under the comparison against
Fig. 4b. For videos with such consistent contents, the L∗

uniform (before normalization) tend to be high for most of the frames.
We show the normalized histogram of L∗

uniform for both TVSum and SumMe videos in Figure 3. As can be observed, SumMe
videos have distinctly higher L∗

uniform than those of TVSum videos.
Consequently, for videos already possessing consistent contents, L∗

uniform normalized to 0 and 1 (L̄∗
uniform) will filter out

frames that are relatively the least consistent. However, such frames are still relevant and may well likely possess a certain
level of diversity, which the annotators of SumMe favor (see the results for L̄∗

align for SumMe in Table 1, 2 and 3 in the main
text). Thus, removing such frames using the L̄∗

uniform will cause harm to the correlations. For some videos with truly noisy
frames, L̄∗

uniform retains its functionality of attenuating their importance, leading to better correlations. Thus, the pros and
cons brought by L̄∗

uniform may cancel out on average for the whole SumMe dataset, eventually yielding minor improvement in
correlation (i.e. τ and ρ). L̄∗

uniform thus suits better complex videos such as those in TVSum, since such videos may inevitably
contain noisy frames that can be well detected by L̄∗

uniform.

2.25 2.00 1.75 1.50 1.25 1.00 0.75
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00 TVSum
SumMe

Figure 3: The histogram (density) of L̄∗
uniform (before normalization) for TVSum and SumMe videos. It is clear that SumMe

videos have distinctly higher values than those for TVSum videos.

Table A9: The results were obtained from the transfer setting on SumMe directly with pre-trained features with a = 0.1.
Thresholding means simply setting L̄∗

align[L̄∗
align < αAVG(L̄∗

align)] = 0, where AVG means taking average over the whole
video and α = 1.1.

Before thresholding After thresholding

F τ ρ F τ ρ

L̄∗
align 39.4 0.0769 0.0939 40.7 0.0969 0.1119

L̄∗
align&L̄∗

uniform 41.7 0.0597 0.073 44.5 0.0982 0.1134

(a) T-SNE plots for all the SumMe videos.

(b) T-SNE plots for randomly selected 25 TVSum videos.

Figure 4: TSNE plots for SumMe and TVSum videos. See text for analysis.

8. Complete Figures for the Qualitative Analysis
In Fig.5, we provide a larger version of the figure for the qualitative analysis in the main paper (the top and the middle)

together with another one showing how H̄θ̂ improves L̄align&L̄uniform (bottom). Please refer to the main paper for the analyses
of the first two figures.

As shown in the bottom figure of Fig. 5, the green bar selects a frame with nontrivial local dissimilarity and global
consistency but low uniqueness. It turns out that the frame contains only texts and has semantic neighbors with different texts,
which can lead to high local dissimilarity. As the video is an instruction video, such frames with only textual illustrations
should be prevalent, thus also incurring nontrivial global consistency. However, such textual frames are common in nearly
all kinds of instruction videos or other videos with pure textual frames, hence the low uniqueness score. The red bar selects a
frame where some treatment is ongoing for a dog, which is specific to the current video and satisfies the local dissimilarity and
the global consistency. The black bar selects a frame with low local dissimilarity and global consistency but high uniqueness,
which is a frame showing off the vet medicine. Though quite specific to the video, the frame is not favored by the other two
metrics.

Anchor Semantic neighbors

Anchor Semantic neighbors

0.364

0.086

0.709

0.717

0.088

0.687

0.691

0.073

0.492

0.498

0.017

0.859

Anchor Semantic neighbors

0.687

0.398

0

0.682

0.941

0.037

0.945

Figure 5: The complete figure for the qualitative analysis in the main paper.All the important scores are scaled to [0, 1] for
visualization.

References
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici, Balakrishnan Varadarajan, and Sudheendra Vijaya-

narasimhan. Youtube-8m: A large-scale video classification benchmark. arXiv preprint arXiv:1609.08675, 2016.
[2] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv preprint arXiv:2106.08254, 2021.
[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties

in self-supervised vision transformers. In CVPR, 2021.
[4] Sandra Eliza Fontes De Avila, Ana Paula Brandao Lopes, Antonio da Luz Jr, and Arnaldo de Albuquerque Araújo. VSUMM: A

mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recognition Letters, 32(1):56–68,
2011.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at
scale. arXiv preprint arXiv:2010.11929, 2020.

[6] Michael Gygli, Helmut Grabner, Hayko Riemenschneider, and Luc Van Gool. Creating summaries from user videos. In ECCV, 2014.
[7] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet? In

CVPR, pages 6546–6555, 2018.
[8] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision

learners. In CVPR, pages 16000–16009, 2022.
[9] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation

learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9729–9738, 2020.
[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, pages 770–778,

2016.
[11] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical

vision transformer using shifted windows. In ICCV, pages 10012–10022, 2021.
[12] Mayu Otani, Yuta Nakashima, Esa Rahtu, and Janne Heikkila. Rethinking the evaluation of video summaries. In CVPR, 2019.
[13] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.
[14] Yale Song, Jordi Vallmitjana, Amanda Stent, and Alejandro Jaimes. TVSum: Summarizing web videos using titles. In CVPR, 2015.
[15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,

and Andrew Rabinovich. Going deeper with convolutions. In CVPR, 2015.
[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for

computer vision. In CVPR, 2016.
[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.

Attention is all you need. In NeurIPS, 2017.
[18] Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman. Video summarization with long short-term memory. In ECCV, 2016.
[19] Kaiyang Zhou, Yu Qiao, and Tao Xiang. Deep reinforcement learning for unsupervised video summarization with diversity-

representativeness reward. In AAAI, 2018.

