
Fine Gaze Redirection Learning with Gaze Hardness-aware Transformation
(Appendix)

1. Redirection Process
We use the transforming autoencoder (TA) structure pro-
posed by Hinton et al. [2] as a backbone for gaze redirec-
tion. Similar to FAZE and STED [6, 15], the redirection
process (R in main body) of TA responsible for the trans-
formation of latent features is defined based on the rotation
matrix R in Eq. 1.
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Here, (θgs , ϕ
g
s) represents the pitch and yaw angle of the

source gaze direction. Similar to Eq. 2, Rg
t is defined based

on (θgt , ϕ
g
t ). The redirection process based on these rotation

matrices is also applied to head pose zhs . Redirected fea-
tures are used to generate redirected images for supervised
learning.

2. Other loss function
This section describes Lother for better reconstruction.
Lother includes pixel-wise reconstruction loss and percep-
tual loss, which is defined as follows [15]:

Lother = ∥x̃t − xt∥1 +
5∑

k=1

∥Fk(x̃t)− Fk(xt)∥2 (3)

where Fi(·) is the activation feature map of the i-th layer of
ψ.

3. Further Analysis of SG loss
Relationship with contrastive loss. Let’s analyze the op-
eration of Lsg in terms of the well-known contrastive loss.
First, Ji,j of Lsg is rearranged using logarithmic and expo-
nential operators as follows:
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(4)
Note that temperature hyper-parameter τ was omitted for
simplicity. In Eq. 4, only the cases where Di,k and Dj,l are
always less than a margin δ are considered admissible pairs.
Meanwhile, the second and third terms (terms with negative
pairs) are changed to LogSumExp form with a tight upper-
bound range. Therefore, Lsg can be redefined by
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Eq. 5 only deals with the case where Ji,j > 0, and hard
negatives are mined by max(0, Ji,j). The first term in Eq.
5 is learned so that Di,j is minimized. On the other hand,
since eδ−Di,k and eδ−Dj,l of the second and third terms are
minimized, each of Di,k and Dj,l is learned toward the in-
creasing direction [4].

Note that Eq. 5 is considered as a form of generalized
contrastive loss with mined hard negatives. In detail, the
first term of RHS in Eq. 5 is an alignment term that encour-
ages the gaze direction of positive pairs (zgs , z

+
s ) or (zgs , z

e
s)

to be consistent (see Figure 3(b) in the main body). The
second and third terms are regarded as distribution match-
ing terms that encourage the distribution of negative pairs to
match the prior distribution [10]. In particular, terms with
LogSumExp encourage latent feature representations to
match uniform distributions on the hypersphere. As a result,
the second and third terms of Eq. 5 are trained so that the
distribution of negative pairs (zgs , z

h
s ), (z

g
s , z

u
s ) and (zgs , z

−
s )

matches the uniform distribution. Therefore, zgs enables to
utilize unbiased hard negatives for similarity learning.
Analysis from an information-theoretic perspective. It is
known that contrastive loss has a lower bound of mutual in-
formation [5, 7]. Similarly, the generalized contrastive loss



Table 1: Performance according to the mini-batch size in the
test split of GazeCapture dataset

Mini-batch errg errh h→ g g → h LPIPS

32 1.973 0.720 1.933 0.334 0.196
48 2.010 0.770 1.895 0.380 0.203
64 2.110 0.724 1.993 0.340 0.206

128 1.964 0.693 1.882 0.330 0.203

in Eq. 5 can also be interpreted as the mutual information
(I) with entropy (H) between two latent variables, i.e., U
and V : I(U, V ) = H(U) − H(U |V ). The alignment term
in Eq. 5 is directly related toH(U |V ), which aims to reduce
the uncertainty between positive pairs. Distribution match-
ing terms are related to H(U) and can be considered auxil-
iary pairs to maximize entropy. Therefore, Eq. 5 has a (com-
pact) lower bound based on mutual information and theoret-
ically guarantees learning stability.

4. Implementation of ContraCAM
We employed a class activation map (CAM) to visualize the
effect of discriminative learning of the proposed method.
Unlike CAM [16] and Grad-GAM [8], which use the dis-
crete probability of Softmax as a confidence score, Con-
traCAM [3] uses continuous probability as a confidence
score. So, ContraCAM is suitable for visualizing the activa-
tion map of the proposed method because it can utilize gaze
and head pose predictions as continuous confidence scores.
ContraCAM is defined by

ContraCAMhw = Normalize

(
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c

αcA
c
hw

))
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∂Ac
hw
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(6)

where Ac
hw is the feature map or spatial activation ex-

tracted from the middle stage (the 6th layer) of encoder E .
Also, h, w and c indicate the index of height (H), width
(W ) and channel size (C), respectively. Normalize(x) =

x−min(x)
max(x)−min(x) is a normalization function that maps the
range of x to [0, 1]. MLP(·) stands for multi-layer per-
ceptron (MLP) that extracts a confidence score (prediction)
from each feature. In this paper, the number of layers of
MLP is 2. The main differences between ContraCAM and
original CAM in Eq. 6 are as follows: One is that clips
activation values with a non-negative sign and another is
MLP(·) (marked as red color) that outputs (continuous)
confidence scores. We can see the Pytorch-like pseudocode

Table 2: Performance according to metric loss

Metric loss errg errh h→ g g → h LPIPS

Margin [11] 2.264 0.827 1.994 0.368 0.212
DSML (tri) [13] 2.100 0.799 1.915 0.377 0.206

SG (Ours) 1.973 0.720 1.933 0.334 0.196

that describes the behavior of ContraCAM in Listing 1.
Figure 3 shows additional qualitative results using Con-

traCAM on the GazeCapture dataset. In all samples, gaze
features of the proposed method gave higher attention
scores to the eye region than STED. We can observe that
while the head pose and task-irrelevant features of STED
consider the eye region together, the features of the pro-
posed method separate the eye region and other regions
from each other.

1 A = encoder[:-2](x) # 6th feature map of encoder
2

3 z = encoder(x) # feature vector
4

5 predicted_label = MLP(z)
6

7 grad = autograd.grad(predicted_label.sum(), A)[0]
8

9 weight = adaptive_avg_pool2d(grad, output_size
=(1, 1))

10 weight = relu(weight) # non-negative clipping
11

12 # weighted sum
13 cam = sum(weight * A, dim=1, keepdim=True).detach

()
14

15 cam = resize(cam(h, w))
16 cam = normalize(relu(cam)) # normalize to [0, 1]

Listing 1: Pytorch-style pseudo-code for ContraCAM

5. Additional Experiments
5.1. Abalation Study

Variation of mini-batch size. Table 1 shows the perfor-
mance change as the mini-batch size increases in the Gaze-
Capture dataset. As the mini-batch size increased from 32
to 128, the overall performance of all metrics improved. In
the case of 48 and 64, the performance changed marginally,
but when 128 was used, we could achieve an average 6%
performance improvement in almost all metrics compared
to 32.
Other metric losses. In order to verify the discriminative
learning ability of the proposed SG loss, gaze redirection
was performed through different metric losses (see Table
2). First, the formula for margin loss [11] is as follows:

Lmargin = [α+ yi,j (Di,j − β)]+ . (7)



where the flexible boundary parameter β is learnable, and
the static margin α is fixed to 1. Positive and negative class
indicator is yi,j ∈ {−1, 1}. Next, deep SNR-based metric
learning (DSML) of [13] measures the similarity between
two features using the SNR metric dS(zi, zj) =

var(zi−zj)
var(zi)

rather than the Euclidean distance. Here, var(z) is the vari-
ance of z. The triplet-based SNR metric loss we adopted is
as follows:
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s , z

e
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g
s , z

h
s ) + α

]
+

+ [dS(z
g
s , z

e
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g
s , z

u
s ) + α]+ .

(8)

where margin αwas set to 1. As in Table 2, the proposed SG
loss achieved about 12% lower errg than the margin loss.
In addition, when using triplet-based DSML, an average 8%
improvement in performance was observed in all metrics.

Finally, we evaluated the performance according to the
use of Mh and Mu in Eq. 3 of main body. When Mh and
Mu was used, errg was 1.884, which is about 10.3% higher
than 2.101 when not used. When zes was used instead of
zgs in Eq. 3 of main body, there was a slight performance
difference of about 0.97%.

5.2. Within-dataset Evaluation

We compared the performance of the proposed method and
state-of-the-art redirection methods according to the within-
dtaset evaluation protocol. Table 3 shows the performance
of the proposed method and other methods on the MPI-
IGaze, Columbia and EYEDIAP datasets. Note that the pro-
posed method showed consistently better performance for
all datasets. Therefore, not only Table 3, but also the cross-
dataset evaluation result of the main body, which is a more
difficult evaluation, sufficiently proves the outstanding per-
formance of the proposed method.

5.3. Interpolation and Extrapolation

We use the interpolated gaze feature zgtr to generate a redi-
rected image x̃: x̃ = G(Concat(zgtr, z

h
s , z

u
s )). The results

of Figure 1(a) suggest that the proposed method manipu-
lates the gaze direction between the source and the target
well while maintaining the identity of the generated face.
Results for more samples are given in Figure 4. Also, Fig-
ure 1(b) shows the image generated using the extrapolated
gaze feature between the source and the target. We can ob-
serve that the proposed method can generate images with
gaze direction that are not limited to source and target im-
ages.

5.4. Gaze Direction of Generated Gaze Feature

To prove the reliability of the gaze direction of the image
generated using the interpolated gaze feature, we calculated
the difference between the GT and the gaze direction of the

Figure 1: Generated image using interpolated and extrapo-
lated gaze feature.

Figure 2: Correlation with ground-truth and predicted gaze
direction from the image generated using interpolated gaze
feature.

image generated by the pre-trained gaze estimation network
ψ. This experiment used gaze features generated from 1000
source and target image pairs randomly sampled from the
test set of the GazeCapture dataset. Figure 2 plots the strong
correlation between the predicted gaze direction and GT
(Pearson correlation coefficient of 0.93). This proves that
the interpolated gaze feature represents the corresponding
gaze direction well.
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Figure 3: Additional qualitative results on GazeCapture dataset



Figure 4: Generated image using the interpolated gaze feature


