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A. More Implementation Details
We mainly follow the experimental settings of [2, 7]. Table A1 provides the detailed hyperparameter and training settings

for all datasets used in our work.

Dataset LR BS WD Epochs LRS

CIFAR100-LT 0.1 128 5e-4 200 multistep
ImageNet-LT 0.025 64 5e-4 180 cosine
iNaturalist 2018 0.1 256 1e-1 200 cosine

Table A1. More implementation details.

B. More results on ImageNet-LT and iNaturalist 2018
We provide more detailed results in Table A2 and A3. Ours (each expert) denotes the accuracy of PC softmax on each

expert’s output. We can observe that even the single expert network with the reduced dimension achieves state-of-the-
art performance, outperforming other multi-expert based methods. This indicates the proposed framework’s great use in
enhancing representation quality.

*Work done at AIRS Company, Hyundai Motor Group



Method
ResNet-50 ResNeXt-50

Many Med. Few All Many Med. Few All

Cross Entropy 68.7 41.8 10.3 47.9 68.9 43.2 12.6 49.0
PC Softmax 64.1 50.3 29.0 52.7 64.8 50.6 31.9 53.5
LADE [4] - - - - 65.1 48.9 33.4 53.0
MiSLAS [7] 61.7 51.3 35.8 52.7 - - - -
SSD [5] - - - - 66.8 53.1 35.4 56.0
DIVE [3] - - - - 64.1 50.4 31.5 53.1
RIDE [6] 66.2 51.7 34.9 54.9 67.6 53.5 35.9 56.4
ACE [1] - - - 54.7 - - - 56.6

Ours (each expert) 65.8 53.3 36.4 55.8 68.0 54.4 37.1 57.3
Ours 67.6 55.3 38.2 57.7 70.2 56.7 39.1 59.5

Table A2. Top-1 accuracy on ImageNet-LT with ResNet-50 and ResNeXt-50.

Method Top-1 accuracy

Cross Entropy † 65.0
PC Softmax † 69.3
BBN [8] 69.6
LADE [4] 70.0
MiSLAS [7] 71.6
SSD [5] 71.5
DIVE [3] 71.7
ACE [1] 72.9

Ours (each expert) 73.0
Ours 74.9

Table A3. Top-1 accuracy on iNaturalist 2018. Rows with † denote results directly borrowed from [4].
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