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Network architectures & Optimizers
We use one MLP and one CNN architecture. For MNIST

we train a 1-hidden layer fully-connected network with Adam
(learning rate = 2 × 10−4 and a learning rate scheduler:
ReduceLROnPlateau). (This is same as the network used for Co-
Teaching and Co-Teaching+ [11, 49]). For CIFAR-10 we train a
4-layer CNN with Adam [17] (learning rate = 2 × 10−3 and a
learning rate scheduler: ReduceLROnPlateau). All networks are
trained for 200 epochs. For MR, SGD optimizer with momentum
0.9 and learning rate of 1 × 10−3 is used as the meta-optimizer.
For MN, SGD optimizer with learning rate of 2 × 10−3 is used
as meta-optimizer. For CL, soft hinge loss is used as suggested
in [27] instead of cross-entropy loss. Rest of the algorithms use
cross-entropy loss. All the simulations are run for 5 trials. A pre-
trained ResNet-50 is used for training on Clothing-1M with SGD
(learning rate of 1× 10−3 that is halved at epochs 6 and 11) with
a weight decay of 1×10−3 and momentum 0.9 for 14 epochs. All
experiments use PyTorch [34], NumPy [12], scikit-learn [36], and
NVIDIA Titan X Pascal GPU with CUDA 10.0.

These settings of optimizer, learning rate, and learning rate
scheduler were found to work the best for our experimental and
hardware setup.

With our work for robust learning under label noise, our
objective has been to show the degree of robustness offered by
BARE for any given architecture. Keeping this in mind along
with maintaining some commonality with the architectures used
for baseline schemes (i.e., their corresponding papers), we have
shown simulation results for the aforementioned MLPs and 4-
layer CNNs. However, it should be noted that BARE continues
to demonstrate its effectiveness on bigger architectures such as
ResNet-50 as seen in Clothing-1M performance results (Table 3).

Test accuracies on MNIST & CIFAR-10
We tabulate the test accuracies of all the algorithms on MNIST

and CIFAR-10 in Tables 4 – 9. The best two results are in bold.
These are accuracies achieved at the end of training. For CoT [11]
and CoT+ [49], we show accuracies only of that network which
performs the best out of the two that are trained. In the main paper
we showed the plots of accuracies.

It may be noted that in a couple of cases the standard deviation
in the accuracy for MN is high. As we mentioned in the main
paper, we noticed that MN is very sensitive to the tuning of
hyper parameters. While we tried our best to tune all the hyper
parameters, maybe the final ones we found for these two cases are
still not the best and that is why the standard deviation is high.

Performance on Clothing-1M dataset
Table 3 shows how the proposed algorithm fares against several

baselines in terms of test accuracy on Clothing-1M dataset. For
the baselines, we report the accuracy values as reported in the
corresponding papers.

Table 3: Test accuracies on Clothing-1M dataset

Algorithm Test Accuracy (%)

CCE 68.94
D2L [29] 69.47
GCE [53] 69.75
Forward [35] 69.84
CoT [11] (as reported in [7]) 70.15
JoCoR [44] 70.30
SEAL [7] 70.63
DY [2] 71.00
SCE [42] 71.02
LRT [55] 71.74
PTD-R-V [45] 71.67
Joint Opt. [41] 72.23
BARE (Ours) 72.28
C2D [54] (ELR+ [26] with SimCLR [8]) 74.58
DivideMix [24] 74.76

Table 4: Test Accuracy (%) for MNIST - η = 0.5
(symmetric)

ALGORITHM TEST ACCURACY

COT [11] 90.80± 0.18
COT+ [49] 93.17± 0.3
MR [38] 90.39± 0.07
MN [39] 74.94± 9.56
CL [27] 92.00± 0.26
CCE 74.30± 0.55

BARE (OURS) 94.38± 0.13

Table 5: Test Accuracy (%) for MNIST - η = 0.7
(symmetric)

ALGORITHM TEST ACCURACY

COT [11] 87.17± 0.45
COT+ [49] 87.26± 0.67
MR [38] 85.10± 0.28
MN [39] 65.52± 21.35
CL [27] 88.28± 0.45
CCE 61.19± 1.29

BARE (OURS) 91.61± 0.60



Table 6: Test Accuracy (%) for MNIST - η = 0.45 (class-conditional)

ALGORITHM TEST ACCURACY

COT [11] 95.20± 0.22
COT+ [49] 91.10± 1.51
MR [38] 95.40± 0.31
MN [39] 75.03± 0.59
CL [27] 81.52± 3.27
CCE 74.96± 0.21

BARE (OURS) 94.11± 0.77

Table 7: Test Accuracy (%) for CIFAR-10 - η = 0.3 (symmetric)

ALGORITHM TEST ACCURACY

COT [11] 71.72± 0.30
COT+ [49] 60.14± 0.35
MR [38] 62.96± 0.70
MN [39] 51.65± 1.49
CL [27] 66.124± 0.45
CCE 54.83± 0.28

BARE (OURS) 75.85± 0.41

Table 8: Test Accuracy (%) for CIFAR-10 - η = 0.7 (symmetric)

ALGORITHM TEST ACCURACY

COT [11] 58.95± 1.31
COT+ [49] 37.69± 0.70
MR [38] 45.14± 1.04
MN [39] 23.23± 0.65
CL [27] 44.82± 2.42
CCE 23.46± 0.37

BARE (OURS) 59.53± 1.12

Table 9: Test Accuracy (%) for CIFAR-10 - η = 0.4 (class-conditional)

ALGORITHM TEST ACCURACY

COT [11] 65.26± 0.78
COT+ [49] 63.05± 0.39
MR [38] 70.27± 0.77
MN [39] 63.84± 0.41
CL [27] 64.48± 2.02
CCE 64.06± 0.32

BARE (OURS) 70.63± 0.46



Plots for sample fraction v/s epochs
We show some more plots for fraction of samples chosen by the

baselines along with the proposed scheme, BARE, as epochs go by
for some more dataset and label noise combinations in Figures 7
& 8. As noted during the discussion in the paper, and as is evident
from these figures, BARE is able to identify the clean samples
effectively even without the knowledge of noise rates.

Figure 7: Sample fraction values for η = 0.5 (symmetric
noise) on MNIST

Figure 8: Sample fraction values for η = 0.7 (symmetric
noise) on CIFAR-10

Results on Arbitrary Noise Transition Matrix
In the main paper, we showed results for special class-

conditional noise cases taken from literature. Here we provide
results for an arbitrary, digonally-dominant noise transition matrix
in Tables 10–13. η = 0.45 and η = 0.4 are supplied as the
estimated noise rates to CoT, CoT+, and CL baselines for MNIST
and CIFAR-10 respectively. The best two results are in bold.
It can be seen that the proposed algorithm continues to perform
well. The noise transition matrices are arbitrary but for the sake
of completeness we show them at the end of this supplementary
material.

Table 10: Test Accuracy (%) for MNIST - ηest = 0.45
(arbitrary noise matrix)

ALGORITHM TEST ACCURACY

COT [11] 95.3
COT+ [49] 93.07
CL [27] 88.41

BARE (OURS) 95.02

Table 11: Avg. Test Accuracy (last 10 epochs) (%) for
MNIST - ηest = 0.45 (arbitrary noise matrix)

ALGORITHM AVG. TEST ACCURACY (LAST 10 EPOCHS)

COT [11] 95.22
COT+ [49] 93.08
CL [27] 88.56

BARE (OURS) 95.03

Table 12: Test Accuracy (%) for CIFAR10 - ηest = 0.4
(arbitrary noise matrix)

ALGORITHM TEST ACCURACY

COT [11] 71.92
COT+ [49] 68.56
CL [27] 72.12

BARE (OURS) 76.22

Table 13: Avg. Test Accuracy (last 10 epochs) (%) for
CIFAR10 - ηest = 0.4 (arbitrary noise matrix)

ALGORITHM AVG. TEST ACCURACY (LAST 10 EPOCHS)

COT [11] 71.86
COT+ [49] 68.99
CL [27] 72.27

BARE (OURS) 75.96



Table 14: Network Architectures used for training on MNIST and CIFAR-10 datasets

MNIST CIFAR-10

DENSE 28×28 → 256

3×3 CONV., 64 RELU, STRIDE 1, PADDING 1
BATCH NORMALIZATION

2×2 MAX POOLING, STRIDE 2
3×3 CONV., 128 RELU, STRIDE 1, PADDING 1

BATCH NORMALIZATION

2×2 MAX POOLING, STRIDE 2
3×3 CONV., 196 RELU, STRIDE 1, PADDING 1

BATCH NORMALIZATION

3×3 CONV., 16 RELU, STRIDE 1, PADDING 1
BATCH NORMALIZATION

2×2 MAX POOLING, STRIDE 2
DENSE 256 → 10 DENSE 256 →10



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0.6 0 0 0 0 0.3 0 0.1
0 0 0 0.5 0 0.1 0 0 0.4 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0.15 0.55 0.3 0 0 0
0 0 0 0 0 0.35 0.55 0.10 0 0
0 0.25 0 0 0 0 0 0.5 0 0.25
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


Arbitrary Noise Transition Matrix for MNIST



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0.2 0 0.7 0 0 0 0.1 0 0 0
0.1 0 0 0.6 0 0.1 0 0 0.2 0
0 0.1 0.1 0 0.7 0 0 0.1 0 0
0 0 0 0.1 0 0.6 0 0 0 0.3
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0.1 0 0 0 0 0 0.1 0 0.8


Arbitrary Noise Transition Matrix for CIFAR-10



Performance under different noise rates
The proposed algorithm shows fairly stable robustness across

noise rates. The paper reports results on three noise rates in
Figures 1 & 2. Table 2 is about the effect of minibatch size and we
included a different noise rate here. We report some more results
on different noise rates. Table 15 shows performance of BARE on
MNIST under different noise rates (averaged over 5 runs of 200
epochs each) and Table 16 shows some more empirical results on
sensitivity of BARE to batch-sizes.

Table 15: Test Accuracy (%) of BARE on MNIST &
CIFAR-10

DATASET NOISE (η) TEST ACCURACY (IN %)

10% (SYM.) 96.7± 0.31
20% (SYM.) 96.39± 0.23
30% (SYM.) 95.92± 0.17
40% (SYM.) 95.22± 0.23

MNIST 50% (SYM.) 94.38± 0.13
60% (SYM.) 93.44± 0.27
70% (SYM.) 91.61± 0.59

20% (CC) 96.45± 0.33
45% (CC) 95.05± 0.23

10% (SYM.) 78.76± 0.42
20% (SYM.) 77.13± 0.46
30% (SYM.) 75.85± 0.41

CIFAR-10 40% (SYM.) 73.86± 0.49
60% (SYM.) 66.87± 0.82
70% (SYM.) 59.87± 1.12

20% (CC) 76.78± 0.38
40% (CC) 70.63± 0.46

Rationale for choosing baselines in this work
There are now a very large number of algorithms motivated

by different ideas for learning under label noise. Hence, we
compared against only those methods that use sample selection
as the main strategy and for these comparisons we used the same

Table 16: Test Accuracy (%) of BARE on MNIST &
CIFAR-10 with batch sizes ∈ {64, 128, 256}

DATASET NOISE (η) BATCH SIZE TEST ACCURACY

64 96.26± 0.10
MNIST 30% (SYM.) 128 96.03± 0.20

256 95.62± 0.13

64 92.42± 0.40
MNIST 70% (SYM.) 128 91.61± 0.60

256 91.4± 0.38

64 59.97± 0.66
CIFAR-10 70% (SYM.) 128 59.53± 1.12

256 56.72± 0.72

Table 17: Test accuracies on MNIST under label noise for
500 epoch runs

DATASET NOISE (η) ALGORITHM TEST ACCURACY

COT [11] 84.65± 0.22
MNIST 70% (SYM.) COT+ [49] 79.52± 0.91

MR [38] 80.36± 0.56
BARE (OURS) 91.52± 0.61

COT [11] 95.33± 0.14
MNIST 45% (CC) COT+ [49] 84.69± 1.81

MR [38] 93.92± 0.20
BARE (OURS) 94.65± 0.57

COT [11] 58.08± 1.61
CIFAR-10 70% (SYM.) COT+ [49] 28.18± 0.57

MR [38] 40.52± 1.62
BARE (OURS) 58.03± 1.01

COT [11] 65.19± 0.61
CIFAR-10 40% (CC) COT+ [49] 62.61± 0.48

MR [38] 68.84± 0.58
BARE (OURS) 69.88± 0.44

network for all methods and used the same noisy training set
(with MNIST, CIFAR). For Clothing1M data, the results shown in
supplementary material for different algorithms are all as reported
in the respective papers and different results are with different
network architectures. Here we reported results available in
literature for different algorithms, including algorithms that do not
rely on sample selection.

Regarding early-stopping and long training
From Figures 1 & 2, it is easily seen that irrespective of which

epoch you would stop the other algorithms, the final accuracy
achieved by BARE is better. For BARE, we can run the algorithm
without any such necessity of early stopping. Further, we ran other
algorithms that are close to BARE for upto 500 epochs and noticed
that the test accuracies either saturated at the level shown in the
Figures 1 & 2 or decreased. See Table 17. Apart from this, to be
able to decide some epochs after which to stop, one needs clean
validation data; the proposed algorithm does not need any such
validation data.

Performance with large number of classes
Food-101N [23] is a dataset for food classification that consists

of 101 classes and 310k training images collected from the web.
Estimate label noise rate is ∼ 20% and it is feature-dependent
noise. The Food-101 [5] testing set is used for testing, which
contains 25k cleanly-labelled images. Following the baselines,
we train a ResNet-50 network (pre-trained on ImageNet) for 30
epochs with SGD optimizer. The batch size taken is 128 and
the initial learning rate is 0.01, which is divided by 10 every 10
epochs. For data-augmentation, we follow same procedure as
baselines – random horizontal flip, and resizing the image with a



short edge of 256 and then randomly cropping a 224× 224 patch
from the resized image. Table 18 shows how BARE compares
with the baselines. With randomly formed minibatches of size 128
(and without any regard for sample sizes of different classes in a
minibatch), we get an accuracy of 84.12% ( denoted as without
batch-balance) which is better than CleanNet (83.95%) but not
PLC (85.28%).

Table 18: Test Accuracy (%) on Food-101N dataset

ALGORITHM TEST ACCURACY

CCE (STANDARD) 81.67%
CLEANNET [23] 83.95%
PLC [52] 85.28

BARE (WITHOUT BATCH-BALANCE) 84.12

Rationale for choosing threshold (in BARE)
The main idea in the algorithm is to use minibatch statistics

to derive the threshold on probabilities for sample selection.
As is to be expected, it is effective when we choose samples
from the ‘top quantiles’. We now show results obtained when
the threshold is taken as “mean + κ ∗ std. dev.” for κ ∈
{−1, 0, 0.5, 0.75, 1, 1.25, 1.5}. The method works well for all
values of κ except κ ∈ {−1, 0}. These results are shown here in
Table 19. We also noticed that the numerical value of the threshold
varies across minibatches and is different for different clases thus
justifying the motivation we started with. Figures 9 – 12 show the
evolution of these threshold values (i.e. RHS of Equation 7 with
κ = 1) for some of the randomly picked classes in MNIST and
CIFAR-10 dataset at 0th, 100th and 200th epoch under different
noise rates and noise types.



Table 19: Test accuracies of BARE under label noise for κ ∈ {−1, 0, 0.5, 0.75, 1, 1.25, 1.5}

DATASET NOISE (η) κ TEST ACCURACY

-1 58.25± 0.73
0 92.1± 0.76

0.5 91.32± 0.82
MNIST 70% (SYM.) 0.75 91.37± 0.37

1 91.61± 0.59
1.25 91.31± 0.32
1.5 91.2± 0.53

-1 74.95± 0.39
0 93.8± 1.54

0.5 94.26± 1.06
MNIST 45% (CC) 0.75 93.06± 1.65

1 94.11± 0.77
1.25 93.2± 2.84
1.5 92.72± 3.71

-1 23.3± 0.33
0 42.49± 3.44

0.5 58.17± 0.50
CIFAR-10 70% (SYM.) 0.75 59.04± 0.67

1 59.93± 1.12
1.25 57.14± 1.78
1.5 56.66± 0.66

-1 63.77± 0.11
0 64.70± 0.31

0.5 67.92± 0.29
CIFAR-10 40% (CC) 0.75 69.87± 0.34

1 70.63± 0.46
1.25 71.06± 0.56
1.5 70.81± 1.22



(a) (b) (c)

Figure 9: Average class-wise posterior probability across mini-batches; (a): class 0; (b): class 3; (c): class 4 – MNIST under
η = 0.7 (symmetric) noise

(a) (b) (c)

Figure 10: Average class-wise posterior probability across mini-batches; (a): class 0; (b): class 3; (c): class 4 – MNIST under
η = 0.45 (class-conditional) noise

(a) (b) (c)

Figure 11: Average class-wise posterior probability across mini-batches; (a): class 7; (b): class 8; (c): class 9 – CIFAR-10
under η = 0.7 (symmetric) noise

(a) (b) (c)

Figure 12: Average class-wise posterior probability across mini-batches; (a): class 6; (b): class 7; (c): class 8 – CIFAR-10
under η = 0.4 (class-conditional) noise


