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1. Introduction
In this supplementary material, we provide:

* details about datasets used in experiments;

e comparison with other recent methods which were
designed for memory-free class-incremental learning
(MFCIL);

» implementation details for all tested approaches;
* extended results on the negative examples ratios;

 supplementary results for the use of a ratio between
positives and negatives;

» working FeTrIL code for CIFAR-100 [6] with T = 10

states.
2. Datasets details
Dataset #Train #Test | w(Train) | o(Train)
CIFAR-100 [6] 50,000 10,000 500.0 0.0

100,000 | 10,000 | 500.0 0.0
128856 5,000 | 1288.56 4485
1,231,167 | 50,000 | 1231.2 70.2

TinyImageNet [7]
ImageNet-Subset [9]
ILSVRC [9]

Table 1. Summary of datasets. u is the mean number of train im-
ages per class and o is the standard deviation

The datasets used in evaluation are designed for visual
classification tasks. Their main statistics are in Table 1.
Since the actual test subsets are not provided by the or-
ganizers of the ImageNet LSVRC competition, we follow
common practice in incremental learning [8, 3, 5] and use
the original validation subsets for the test phase.

3. Implementation details

When implementations of compared methods were
available, we first tested them using the protocol and

datasets from the original paper to make sure that we re-
produced their results. We then used the authors’ optimal
parameters to test these methods in our evaluation setting.
Note that for sake of fairness, all baselines were run using
both training and validation sets (from Table 1). A ResNet-
18 model [4] and an SG'D optimizer with momentum =
0.9 are used for all methods. We explicitly list the learning
parameters of each method hereafter:

1. Training the initial model:

This training regime is needed to obtain the initial
model for each method, and also Joint training which
can be considered the upper bound method where all
classes are learned with all their data at once. We used
the parameters provided by the authors as follows.

Joint and the first models of FT and SIW are train-
ing using the parameters from [2]. Each model is
learned for 120 epochs using batch size = 256 and
weight decay = 0.0001. The Ir is set to 0.1 and is
divided by 10 when the error plateaus for 10 epochs.

The Ir is set to its initial value decayed by 10 every
30 epochs. The Ir is constrained to do not decrease
beneath 0.001.

For LUCIR, he first model is trained in the same man-
ner than subsequent models (detailed below), follow-
ing the original protocol from [5].

2. Training the incremental models:

Here, we describe the hyper-parameters used to train
the methods which were retrained in Table 1 of the
main paper.

* LUCIR [5] - all models are trained for 90 epochs
using Ir = 0.1, batch size = 128 and
weight decay = 0.0001. The Ir is divided by



CIL Method CUB200 Flower102
T=5 T=10 T=5 T=10

SDC[11] «verz0 700  65.8 86.8 80.4

FeTrIL! 71.6 71.0 90.4 89.7

Table 2. Comparison of SDC [11] with FeTrIL! using the evalu-
ation protocol for two supplemenary datasets used in [11]. Best
results in bold.

CIL Method ImageNet50 ImageNet100
T=5 T=20

ABDI10] cevan 71.5 12.1

FeTrIL! 89.0 39.0

Table 3. Comparison of ABD [10] with FeTrIL using the authors’
evaluation protocol. ImageNet50 includes 50 classes and 5 states
of 10 classes. ImageNet100 includes 100 classes, with 20 states of
5 classes each. Note that [10] uses top-5 accuracy for ImageNet50
and top-1 for ImageNet100 and we present the same numbers.
Best results in bold.

10 at epochs 30 and 60. The method-specific pa-
rameters are the same as those from the original
paper [5] and can also be found once we release
the codes and configuration files.

e DeeSIL [1] - the initial model is the same one
used for FeTrIL. The training of linear classifier
is also done using the same parameters.

4. Comparison to other recent MFCIL meth-
ods

In Table 2, we compare FeTrIL. SDC [11] using the eval-
uation protocol and datasets from [11]. Half of the datasets
are assigned to the initial state and the rest of classes are
split evenly among the remaining states. Following [11],
the training of the initial FeTrI[Lmodel for CUB200 and
Flower102 datasets is initialized with a pretrained ILSVRC
model. We do the same here to facilitate comparison with
the original paper. The results from Table 2 indicate that
FeTrIL ! is clearly better than SDC [11] in all tested con-
figurations. The better stability of FeTrIL results with the
increase of the number of CIL states observed in the main
submission is also confirmed for CUB200, Flower102, the
three medium-scale datasets used in [11].

In Table 3, we present results obtained with FeTrIL and
Always Be Dreaming (ABD) [10] a recent method which
combines distillation and image inversion to address MF-
CIL. The comparison is done for two ILSVRC [9] subsets
which include 50 and 100 classes, respectively. We thank
the authors of [10] for providing the lists of classes for these
two subsets in a personal communication. FeTrIL outper-
forms ABD by a large margin in both configurations. This

result is explained by difficulty of deploying image inver-
sion in an efficient manner for visually complex images,
such as those included in ImageNet.

5. Effect of a positives-to-negatives ratio

In addition to Figure 4 of the main submission, we
present in Figure 1 the behavior of FeTrIL' when we ap-
proximate the negative example pool with different ratios r
for CIFAR-100 and TinyImageNet. These results confirm
the observations made in the main paper since the accuracy
trends observed when using a positives-to-negatives ratio is
similar for all three datasets. This highlights the possibility
to accelerate the training of FeTrIL with very limited accu-
racy loss.

Generally speaking, no EFCIL method can ensure a class
separability comparable to that provided by standard learn-
ing with all images of all classes available simultaneously.
The objective is to find a good balance between the stabil-
ity and the plasticity of EFCIL representations. The ex-
periments from the main paper show that, while imperfect,
the combination of features and of pseudo-features used in
FeTrIL! provides better performance compared to methods
which update the model using variants of knowledge distil-
lation and more complicated class prototypes.
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Figure 1. Top-1 incremental accuracy of FeTrIL' for approximate training of the classification layer with different ratios for negative

sampling. ova denotes a classical one-vs-all training procedure.
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