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Abstract

This document serves as supplementary material of our
paper “3D-SpLineNet: 3D Traffic Line Detection using
Parametric Spline Representations”. We provide details
about our lane representation based on splines, the weight-
ing function used for our proposed regression loss, as well
as additional quantitative and qualitative results.

1. Spline representation
As described in Section 3.1 in the main paper, the line

representation that we focus on in this work is based on
B-Splines with additional offsets α0, β0, which simplifies
to model mean shifts. Hence, the shape of a line f l(t) is
defined in the following way:

f l(t) =

flx(t)t
flz (t)

 =

∑KB

k=1 αk ·Bk,d(t) + α0

t∑KB

k=1 βk ·Bk,d(t) + β0

 . (1)

We now consider a single one-dimensional spline function
f(t) in more detail, and ignore additional offset values for
simplicity. The spline is defined as a linear combination of
basis functions. Here we consider B-Splines as the basis
functions, which can be imagined as piecewise defined re-
cursive polynomials. Given KB B-Spline basis functions
Bk,d of degree d we obtain

f(t) =

KB∑
k=1

θk ·Bk,d(t) , (2)

where {θk}KB

k=1 denotes the set of control points to weight
each basis function, analogously to the control points
{αk, βk }KB

k=1 for the line x- and z-components.
The location and definition interval of the basis function

depends on the pre-defined knots and the degree d. The
expression of a recursively defined B-Spline basis function

can be derived from the Cox-de Boor recursion formula [1]
such that we obtain

Bk,d(t) =
t− tk

tk+d − tk
·Bk,d−1(t) (3)

+
tk+d+1 − t

tk+d+1 − tk+1
·Bk+1,d−1(t) (4)

Bk,0(t) =

{
1 if ti ≤ t < ti+1,

0 else .
(5)

As implied by the formula, each piecewise B-Spline ba-
sis function has a certain range along d+1 knots and can be
computed recursively from its lower degree basis function,
where the 0th degree basis function is 1 along the range of
knot k and 0 elsewhere. Since B-Splines and their linear
combinations are fully differentiable we can use them as a
continuous representation for the x- and z-line components
of our lane detection head enabling us to train our full net-
work end-to-end.

As discussed in Section 3.1 of the main paper, model-
ing the y-component as the scaled curve argument (y(t) =
ηy ·t) restricts the representation to lanes that monotonously
progress in driving direction. While the focus on this work
does not lie on representing edge cases where lines do not
progress monotonously in driving direction (horizontal stop
lines, U-turns), we still want to experimentally investigate
the capabilities of our representation. For this, we ran an
experiment, in which our 3D-SpLineNet overfits to various
challenging line geometries. We generated these lines syn-
thetically to demonstrate the theoretical representation ca-
pabilities in critical scenarios, which are not included in the
utilized dataset but might occur in more challenging real
traffic environments. Fig. 2 shows that intersections with
90◦ turns as well as lane splits and merges can in theory be
represented. Moreover, nearly horizontal lines are possible.
The true limits of our representation can only be observed
for practically horizontal lines of 0-3◦.
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(a) 1st degree B-Splines
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(b) 3rd degree B-Splines
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(c) Full spline function

Figure 1: B-Spline basis functions of 1st (a) and 3rd degree
(b) with 5 knots located at positions indicated by the vertical
dashed lines. (c) shows a full spline curve (blue) as a linear
combination of 3rd degree basis functions weighted by the
control points θk.
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Figure 2: Results of an overfitting experiment (illustrated in
top-view) to demonstrate the theoretical capabilities of our
chosen lane representation.
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Figure 3: Standard deviations of line x- and z-component
from the reference along y-direction. We subtract the refer-
ence area from the line and associate each line point to a bin
(corresponding to a certain y-interval) of a histogram. We
then compute the standard deviations for all bins and obtain
σx(y) and σz(y).

2. Weighting function
As described in Section 3.3 the shape regression loss

Ls

(
l, l̂
)
=

∫ t̂e

t̂s

(
wx(t) ·

∣∣∣flx(t)− 1

ηx
x̂(t)

∣∣∣ (6)

+wz(t) ·
∣∣∣flz (t)− 1

ηz
ẑ(t)

∣∣∣) dt (7)

includes a weighting function w(t) =
[wx(t), wy(t), wz(t)]

T , which assigns a weight to
each difference term depending on t. The weighting is
required since the distribution of lines vary along t, i.e.
along the direction of ego-motion (y-direction). More
specifically, the distances from the ground truth association
reference area show different standard deviations along
y-direction as illustrated in Fig. 3.

Obviously, points in the y-range close to the reference
show small deviations and points far off the reference show
larger deviations. Consequently, without a weighting along
the y-range the difference values with more significant devi-
ations would make a higher contribution to the overall loss.
In order to treat all distances along the y-axis evenly, we
need to divide the difference term by the standard devia-
tion while considering the normalization factors. Thus, the
weighting functions for the x- and z-component are defined



as

wx(t) =
ηx
σx(t)

and wz(t) =
ηz
σz(t)

with t =
y

ηy
. (8)

Since the y-component does not contribute to the loss, we
set wy(t) = 0.

Without using the weighting function we observed a less
balanced minimization of the near-range error and a final
increase of +2.9 cm for the x-near error and +0.1 cm for
the z-near error.

3. Quantitative results
In this section, we provide additional quantitative results

for experiments of our ablation studies from Section 4.2 of
the main paper as well as additional results regarding the
state-of-the-art comparison.

Table 1 shows the results of our ablation study analyzing
all considered association strategies. The detection scores
on both datasets confirm our argumentation that using mean
matching leads to better detection performance than using
fixed point matching. On the Standard dataset, varying
the range for mean matching does not lead to significant
changes in the performance metrics. Still, we obtain the best
results for 40% on the Rare Scenes test set and 40%−60%
on the Standard test set. Regarding the geometric accuracy,
the results show that fixed point matching achieves similar
performance compared to mean matching in the range of
40% − 60%. A possible reason for this is that our chosen
straight line initializations fit well for the fixed point ground
truth association. We expect that using more sophisticated
initializations will lead to lower geometric errors for the
mean based matching and will therefore outperform fixed
point matching on all evaluation metrics.

Table 2 provides a comparison of the considered repre-
sentations on the Standard test set. The comparison shows
similar relations among the results of the representations as
on the Rare Scenes test set. While our chosen representation
based on B-Splines with 15 knots and 3rd degree shows the
best geometric accuracy, it achieves second best results on
the detection scores. As discussed in Section 4.2 of the main
paper, the representations based on B-Splines with 3rd de-
gree and a lower number of knots (e.g. 3rd degree, 5 knots)
show similar performance and thus provide a good alterna-
tive with a lower amount of required parameters.

During our experiments we realized a large gap in the
number of training epochs compared to Gen-LaneNet [2].
To guarantee a fair comparison, we also trained Gen-
LaneNet for the same 300 epochs (like ours). The results
for the two configurations of Gen-LaneNet evaluated on the
Standard dataset are shown in Table 3. The results indi-
cate only small performance improvements apart from an
increasing z-far error. In contrast, we observed that training
our network results in a decreasing regression error beyond

200 epochs. We conclude that training our full architecture
end-to-end on the detection task leverages the full capacity
of the backbone, while solely training the detection head of
Gen-LaneNet leads to earlier saturation with respect to the
detection performance. This further confirms the superior-
ity of 3D-SpLineNet over Gen-LaneNet.

4. Qualitative results
In this section, we show additional examples from

all three test datasets to compare the predictions of our
3D-SpLineNet to Gen-LaneNet [2]. Apart from cases
where our model detects lanes accurately, we also show fail-
ure cases, for which we see potential for improvements.

One suggestion to improve our method is to use a larger
variety of line initializations. This could improve the pre-
diction in scenarios like depicted in Fig. 5 (last row), where
our method tries to model the straight rotated road as a curve
instead of rotated straight lines, which could be added as
initializations. Other scenarios, where better suiting intitial-
izations might lead to benefits, are shown in Fig. 4 (second
last row) and Fig. 5 (second last row), where lines deviate
significantly from straight line initializations in both x- and
z-direction.

Moreover, 3D-SpLineNet faces problems with sharp
changes in z-direction (last row in Fig. 6). We see potentials
for improvements for such cases by using other basis func-
tions for the splines that are more suitable to model sharp
edges in the z-profile.

In summary, we see a larger variety of initializations and
the investigation of other spline basis functions as promis-
ing research directions for future work.
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Dataset Reference F-Score AP x-error z-error
near far near far

Standard

20m 95.7% 97.9% 3.4 33.5 0.7 21.3
First 20% 96.2% 98.1% 3.5 34.4 0.8 22.1
First 40% 96.3 % 98.1% 3.7 32.4 0.9 21.3
First 60% 96.3 % 98.3 % 4.2 33.0 0.8 21.5
First 80% 96.1% 98.0% 5.1 31.8 1.1 21.1
100% 95.9% 98.0% 5.3 31.9 1.1 21.3

Rare Scenes

20m 90.7% 92.5% 6.8 70.7 1.9 56.8
First 20% 92.1% 94.1% 7.0 71.2 1.8 57.5
First 40% 92.9 % 94.8 % 7.7 69.9 2.1 56.2
First 60% 92.5% 94.3% 9.2 69.4 1.8 55.9
First 80% 92.4% 94.6% 10.5 67.4 2.7 55.7
100% 91.2% 93.4% 12.1 70.1 2.6 56.8

Table 1: Comparison of detection scores and geometrical accuracy for different ground truth association methods on the
Standard and Rare Scenes test sets. All distance metrics are provided in cm.

Representation d N F-Score AP x-error z-error
near far near far

Polynomial
2 - 95.2% 97.4% 5.9 39.1 1.0 22.0
3 - 95.8% 97.7% 5.3 35.1 1.1 22.0
5 - 96.1% 98.1% 4.2 34.8 0.9 22.1

B-Splines

1 3 93.5% 95.7% 14.0 57.9 1.2 22.4
3 3 95.8% 97.9% 4.7 34.0 1.0 21.5
1 5 96.0% 97.8% 7.0 36.2 1.0 21.5
3 5 96.5 % 98.3 % 4.0 32.9 0.9 21.5
1 10 96.1% 98.1% 4.2 34.2 0.9 21.6
3 10 96.2% 98.0% 4.0 34.1 0.9 21.4
1 15 96.3% 97.9% 4.8 33.9 0.9 21.3
3 15 96.3% 98.1% 3.7 32.4 0.9 21.3

Table 2: Comparison of geometrical accuracy and F-Score resulting from different representations on the Standard test set. d
denotes the degree and N the number of knots of the B-Splines. All distance metrics are provided in cm.

Method Number of Epochs F-Score AP x-error z-error
near far near far

Gen-LaneNet [2] 30 88.1% 90.1% 6.1 49.6 1.2 21.4
300 89.0% 91.1% 4.6 47.7 1.0 23.9

Table 3: Evaluation of Gen-LaneNet trained for different numbers of epochs on the Standard test set. All distance metrics
are provided in cm.
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Figure 4: Predictions (3D-SpLineNet vs. Gen-LaneNet [2]) and ground truth from the Standard test set illustrated in front-
view, top-view, x- and z-profile and 3D space.
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Figure 5: Predictions (3D-SpLineNet vs. Gen-LaneNet [2]) and ground truth from the Rare Scenes test set illustrated in
front-view, top-view, x- and z-profile and 3D space.
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Figure 6: Predictions (3D-SpLineNet vs. Gen-LaneNet [2]) and ground truth from the Visual Var. test set illustrated in
front-view, top-view, x- and z-profile and 3D space.


