
Supplementary Material – Empirical Generalization Study: Unsupervised
Domain Adaptation vs. Domain Generalization Methods for Semantic

Segmentation in the Wild

Fabrizio J. Piva Daan de Geus Gijs Dubbelman
Eindhoven University of Technology

{f.j.piva, d.c.d.geus, g.dubbelman}@tue.nl

We provide the following supplementary material in ad-
dition to the main manuscript:

• More information about the method selection pro-
cess, to show which existing UDA and DG methods
complied to our selection criteria as defined in main
manuscript (Sec. 1).

• Specifications of the normalized implementation for
the semantic segmentation architecture, that we use for
all DG and UDA methods (Sec. 2).

• Intensity histogram analysis for all datasets used in
our work, to support our dataset selection process by
assessing if they are homogeneous or heterogeneous
(Sec. 3).

• Per-class results of UDA and DG methods, to quantify
the performance of these methods on unseen domains
for each semantic class (Sec. 4).

• Discussion regarding the potential combination of
UDA and DG methods (Sec. 5).

1. Method selection process
As reported in the main manuscript, state-of-the-art

UDA and DG methods must meet the following require-
ments to participate in our evaluation framework:

1. The implementation of the method should be publicly
available, providing training and evaluation scripts.

2. The method should not require training external net-
works not available in the published code.

3. The methods should obtain state-of-the-art results in
the standard benchmarks for their research domains.

4. Reproducing the reported results should not lead to a
performance drop of more than 5%.

Tab. 1 shows the results of the selection process of UDA
and DG methods. All methods in this table obtained state-
of-the-art results at the time of conducting this research.

Task Method Code publicly
available

Does not require
training external

networks

Reported
mIoU (avg.)

Obtained
mIoU (avg.) ∆ mIoU (%) Accepted for

comparison?

UDA

ProDA [20] ✓ ✓ 57.5 56.2 −2.3% ✓
CorDA [15] ✓ ✗ - - - ✗

Coarse-to-fine [11] ✗ ✓ - - - ✗
CAMix [21] ✗ ✓ - - - ✗

DSP [7] ✓ ✓ 55.0 52.0 −5.5% ✗
SAC [2] ✓ ✓ 53.8 52.9 −1.7% ✓

DG
WildNet [9] ✓ ✓ 50.1 49.0 −2.2% ✓

RobustNet [5] ✓ ✓ 51.5 51.1 −0.8% ✓
DRPC [18] ✗ ✓ - - - ✗

Table 1. Result of our method selection process: four out of
nine state-of-the-art candidates could meet the proposed criteria.

Analyzing this table, we observe that several methods are
discarded because their code was not released to the pub-
lic, meaning that the only way to reproduce their results
is to re-implement the methods. As this is an extremely
time-consuming and error-prone process, we considered
this out of scope for this work. Furthermore, one method,
CorDA [15], requires training an external self-supervised
depth estimation network. As this additional network was
not provided with the official code, it would have to be
re-implemented and/or retrained for each dataset, which is
again outside the scope of this work. Finally, DSP [7] was
not considered because the obtained results from the official
code deviated more than 5% from the reported results, and
thus could not be reproduced.

It is important to consider that our study is not meant to
exhaustively benchmark all available UDA and DG meth-
ods for the task of generalization to unseen domains. The
goal is to take several methods that are representative for
the state-of-the-art in UDA and DG research and make a
high-level comparison between UDA and DG for the gener-
alization task. The selected UDA and DG methods are such
state-of-the-art methods and they employ many techniques
that are common to the vast majority of other state-of-the-
art methods. Therefore, besides meeting our more practical
selection criteria, they most importantly provide a good rep-
resentation for the state-of-the-art in their respective fields
of research.



task method original implementation normalized implementation
encoder decoder Cityscapes val mIoU encoder decoder Cityscapes val mIoU

UDA ProDA [20] ResNet-101 [8] DeepLab v2 from [20] 74.4 ResNet-101 [8] DeepLab v2 from [20] 74.4
SAC [2] ResNet-101 [8] DeepLab v2 [3] 67.6 ResNet-101 [8] DeepLab v2 from [20] 68.4

DG WildNet [9] ResNet-101 [8] DeepLab v3+ [4] 76.9 ResNet-101 [8] DeepLab v2 from [20] 70.6
RobustNet [5] ResNet-101 from [5] DeepLab v3+ [4] 76.4 ResNet-101 [8] DeepLab v2 from [20] 74.8

Table 2. Original implementation of selected candidates and normalized implementation. We use a normalized semantic segmentation
network for all methods to allow for a fair comparison. We compare the normalized implementation to the original versions, and run them
in the training setting of experiment 1A, where Cityscapes [6] is the labeled domain Dl, and BDD-100K [17] and Mapillary Vistas [12]
are the unlabeled domains Dnl. When the implementations, we find that replacing the decoder of UDA methods from [3] to [20] leads to
a performance improvement, while downgrading the decoder of DG methods from [4] to [20] produces a performance drop.

ResNet-101 from RobustNet [5] DeepLab v2 from ProDA [20]

+conv2, bn2, relu2, conv3, bn3, relu3 on layer0 +group norm. after ASPP module
ResNet bottleneck without dilations +bottleneck module for affine transformation

+group norm., dropout

Table 3. Implementation details of the adapted encoder from RobustNet [5] and decoder from ProDA [20]. RobustNet adds custom
layers to ResNet-101 [8] on layer0 and does not use dilations in the bottleneck units, and ProDA adds group normalization [16] and a
custom bottleneck module to DeepLab v2 [3].

2. Normalized implementation

As explained in the main manuscript, one of the main is-
sues when trying to compare UDA and DG methods directly
using the reported numbers and original implementations,
is the fact that there exist significant differences in the net-
work architectures that these models use. To illustrate this,
we take the selected UDA and DG methods and perform an
additional experiment where we first train them with their
original implementation, and then with our proposed nor-
malized implementation. The results of this comparison
along with the description of the different architectures of
the selected UDA and DG methods are provided in Tab. 2.

From Tab. 2, we find that our two selected UDA methods
use different decoders. SAC [2] uses DeepLab v2 [3], as is
standard practice for UDA methods [2, 7, 10, 13, 15, 21],
together with ResNet-101 [8], whereas ProDA [20] uses a
modified version of DeepLab v2 (see Tab. 3 for details).
This modified version causes a slight performance boost
on Cityscapes, as SAC is able to increase its performance
from 67.6 to 68.4 when replacing its standard DeepLabv2
decoder by the modified version proposed by ProDA.

We also observe in Tab. 2 that DG methods typically
use a different semantic segmentation network architecture
than UDA methods. Specifically, they use either a stan-
dard ResNet-101 [8] or a slight modification of it [5] (see
Tab. 3), in combination with DeepLab v3+ [4] as decoder.
This particular architecture choice impedes a fair compari-
son with UDA methods. Therefore, in our evaluation frame-
work, we opt for a normalized architecture that all UDA
and DG methods use. Concretely, we downgrade the qual-
ity of the decoder for DG methods (from DeepLab v3+ to
the modified version of DeepLab v2 that ProDA uses) and

maintain the standard ResNet-101 as encoder. As shown in
Tab. 2, this causes a considerable drop in performance for
both WildNet [9] and RobustNet [5]. We also considered
using the standard Deeplab v2 or DeepLab v3+ decoder for
all methods, as this would yield the best results, but run-
ning ProDA with the standard DeepLab with default hyper-
parameters led to experiment failure, i.e., the loss diverged
during training. For this reason, we use the modified version
of DeepLab v2 as proposed by ProDA for all methods.

Finally, we note that, even when RobustNet and Wild-
Net are allowed to use DeepLab v3+, they still underper-
form ProDA with modified DeepLab v2 in terms of gener-
alization to unseen domains. Specifically, RobustNet and
WildNet achieve an mIoU avg. of 50.8 and 52.1, respec-
tively, compared to 56.1 for ProDA. In other words, even
with a less advanced semantic segmentation network, UDA
method ProDA outperforms DG methods on unseen do-
mains.

3. Histogram analysis for all datasets

In Sec. 4.2 of the main manuscript, we aimed to pick
one homogeneous and one heterogeneous dataset from a
set of six selected datasets, to use as labeled datasets Dl

in our evaluation framework. As explained, the choice for
Cityscapes [6] as homogeneous and Mapillary Vistas [12]
as heterogeneous dataset, is mainly based on the knowledge
that we have about the type of images that these datasets
contain. Specifically, we know that Cityscapes contains im-
ages that are all captured with the same camera, mounted
on the same vehicle, in urban environments in the same Eu-
ropean country, in similar circumstances. Therefore, by de-
sign, this dataset is homogeneous. In contrast, Mapillary



0 50 100 150 200 250
Pixel intensity

0.0

0.2

0.4

0.6

0.8

1.0

Cityscapes

(a)

0 50 100 150 200 250
Pixel intensity

0.0

0.2

0.4

0.6

0.8

1.0

BDD-100K

(b)

0 50 100 150 200 250
Pixel intensity

0.0

0.2

0.4

0.6

0.8

1.0

Mapillary Vistas

(c)

0 50 100 150 200 250
Pixel intensity

0.0

0.2

0.4

0.6

0.8

1.0

WildDash

(d)

0 50 100 150 200 250
Pixel intensity

0.0

0.2

0.4

0.6

0.8

1.0

IDD

(e)

0 50 100 150 200 250
Pixel intensity

0.0

0.2

0.4

0.6

0.8

1.0

KITTI

(f)
Figure 1. Pixel intensity histograms for all datasets considered in our work: Cityscapes [6], BDD-100K [17], Mapillary Vistas [12],
WildDash [19], IDD [14] and KITTI [1]. If a dataset has a clear style, and has images captured under similar lighting conditions, we expect
to see a distinct peak at certain intensity values. Therefore, this histogram analysis can provide us with some clues about the homogeneity
or heterogeneity of a dataset.

Vistas is designed to contain images from all over the world,
captured with many different types of cameras, in a plethora
of different conditions and situations. In other words, this
dataset is designed to be heterogeneous.

To further quantify this, we chose to conduct a histogram
analysis of the pixel intensities of images in each dataset.
Concretely, we count how often each pixel intensity occurs
throughout the dataset, and for visualization purposes we
scale the histograms such that the most frequent bin receives
a value of 1. In contrast to the histograms provided in the
main manuscript, we do not take intensity values 0 and 255
into account during scaling, to make the histograms better
interpretable. In the histograms, we expect that, if a dataset
is homogeneous and contains images captured under similar
lighting conditions, there will be a distinct peak at certain
intensity values. If there is no such peak, this indicates that
the images in the dataset are captured with varying lighting
conditions, meaning that the dataset is more likely to be
heterogeneous.

In Fig. 1, we provide the pixel intensity histograms for all
six considered datasets. From this figure, it is immediately
clear that the pixel intensity distributions for WildDash [19]
and Mapillary Vistas are much more uniform than the other
datasets. This makes sense, because these datasets contain

images captured under a wide range of different conditions,
i.e., the datasets are heterogeneous. In contrast, Cityscapes
has a very distinct peak at low-to-medium intensity values,
and very rarely-occurring high intensity values. Again, this
is explainable, because this homogeneous dataset contains
images captured with the same camera, under very similar
lighting conditions. We can see similar histograms for other
homogeneous datasets, IDD [14] and KITTI [1]. Both have
a clear peak, and have images captured under similar light-
ing conditions. Finally, the distribution for BDD-100K [17]
is clearly skewed towards low pixel intensities, although it
is supposed to be somewhat heterogeneous by design. In
this case, this is caused by the fact that it contains many
(low-brightness) nighttime images, in addition to the day-
time images. This indicates that, although these histograms
can provide interesting insights in the style that a dataset
could have, they should not be the single resource that is
used to determine if a dataset is homogeneous or heteroge-
neous. Therefore, in our work, we mainly chose the labeled
datasets Dl, unlabeled datasets Dnl and unseen datasets Du

based on the knowledge of how the datasets are collected,
and what type of images they contain.

Considering the unlabeled datasets Dnl used in the two
experimental settings, it is immediately clear that in ex-



task method roa
d

sid
ew

alk

bu
ild

ing

wall fen
ce

po
le

t. lig
ht

t. sig
n

ve
ge

tat
ion

ter
rai

n
sk

y
pe

rso
n

rid
er

ca
r

tru
ck

bu
s

tra
in

moto
rcy

cle

bic
yc

le

Experiment 1.A: homogeneous labeled domain, heterogeneous unlabeled domain

Labeled-domain-only 81.4 30.6 61.9 27.5 34.3 30.7 33.9 34.5 78.2 40.4 88.5 35.2 23.5 66.1 49.9 36.9 0.9 20.5 23.1

UDA ProDA [20] 90.1↑+8.7 43.0↑+12.4 75.7↑+13.8 40.8↑+13.3 38.5↑+4.2 35.2↑+4.5 48.0↑+14.1 58.7↑+24.2 84.4↑+6.2 48.8↑+8.4 92.1↑+3.6 63.2↑+28.0 44.9↑+21.4 81.7↑+15.6 70.1↑+20.2 56.5↑+19.6 4.1↑+3.2 55.9↑+35.4 34.1↑+11.0

SAC [2] 88.2↑+6.8 37.7↑+7.1 71.0↑+9.1 37.8↑+10.3 36.0↑+1.7 37.4↑+6.7 29.4↓−4.5 49.6↑+15.1 81.2↑+3.0 48.1↑+7.7 92.4↑+3.9 49.1↑+13.9 34.5↑+11.0 73.9↑+7.8 60.6↑+10.7 51.8↑+14.9 4.4↑+3.5 38.2↑+17.7 16.5↓−6.6

DG WildNet [9] 87.1↑+5.7 36.7↑+6.1 62.3↑+0.4 28.7↑+1.2 37.9↑+3.6 17.7↓−13.0 30.7↓−3.2 43.5↑+9.0 80.2↑+2.0 45.7↑+5.3 84.0↓−4.5 50.9↑+15.7 35.7↑+12.2 75.8↑+9.7 64.4↑+14.5 52.7↑+15.8 6.4↑+5.5 45.2↑+24.7 21.0↓−2.1

RobustNet [5] 83.2↑+1.8 37.6↑+7.0 63.5↑+1.6 27.3↓−0.2 37.0↑+2.7 27.3↓−3.4 34.4↑+0.5 49.9↑+15.4 80.4↑+2.2 52.4↑+12.0 86.7↓−1.8 50.9↑+15.7 33.2↑+9.7 70.7↑+4.6 52.2↑+2.3 52.1↑+15.2 3.2↑+2.3 34.6↑+14.1 21.0↓−2.1

Fully sup. training domains 89.9↑+8.5 39.1↑+8.5 76.4↑+14.5 43.4↑+15.9 42.3↑+8.0 44.2↑+13.5 43.1↑+9.2 57.3↑+22.8 86.0↑+7.8 56.8↑+16.4 94.4↑+5.9 55.6↑+20.4 43.1↑+19.6 83.4↑+17.3 69.8↑+19.9 59.2↑+22.3 4.0↑+3.1 41.6↑+21.1 25.0↑+1.9

Fully sup. unseen domains 90.9↑+9.5 44.9↑+14.3 74.4↑+12.5 43.2↑+15.7 35.2↑+0.9 39.8↑+9.1 30.7↓−3.2 45.6↑+11.1 85.1↑+6.9 61.5↑+21.1 94.2↑+5.7 49.7↑+14.5 35.3↑+11.8 82.5↑+16.4 65.7↑+15.8 58.3↑+21.4 3.2↑+2.3 38.4↑+17.9 2.7↓−20.4

Fully sup. all domains 93.3↑+11.9 58.4↑+27.8 80.4↑+18.5 56.4↑+28.9 49.7↑+15.4 49.8↑+19.1 48.9↑+15.0 61.3↑+26.8 87.5↑+9.3 66.2↑+25.8 95.5↑+7.0 62.8↑+27.6 50.0↑+26.5 88.1↑+22.0 79.3↑+29.4 77.4↑+40.5 6.9↑+6.0 57.0↑+36.5 34.1↑+11.0

Experiment 1.B: heterogeneous labeled domain, homogeneous unlabeled domain

Labeled-domain-only 89.7 39.2 74 38.6 39.7 42.7 40.6 51.4 84.4 50.6 93.5 46.5 36.6 80.8 68.2 56.5 0.2 33.9 21.6

UDA ProDA [20] 92.3↑+2.6 47.8↑+8.6 77.8↑+3.8 43.1↑+4.5 47.2↑+7.5 34.3↓−8.4 47.3↑+6.7 58.3↑+6.9 85.4↑+1.0 54.0↑+3.4 93.7↑+0.2 61.0↑+14.5 35.6↓−1.0 83.6↑+2.8 76.3↑+8.1 67.4↑+10.9 3.2↑+3.0 44.5↑+10.6 25.9↑+4.3

SAC [2] 88.9↓−0.8 43.0↑+3.8 74.9↑+0.9 38.5↓−0.1 40.5↑+0.8 45.7↑+3.0 43.0↑+2.4 52.2↑+0.8 84.8↑+0.4 52.2↑+1.6 94.1↑+0.6 51.6↑+5.1 32.2↓−4.4 78.2↓−2.6 66.7↓−1.5 56.5↓0.0 0.0↓−0.2 34.4↑+0.5 21.0↓−0.6

DG WildNet [9] 88.3↓−1.4 35.4↓−3.8 73.8↓−0.2 32.0↓−6.6 30.3↓−9.4 24.2↓−18.5 31.6↓−9.0 40.8↓−10.6 82.0↓−2.4 52.8↑+2.2 90.9↓−2.6 47.6↑+1.1 31.9↓−4.7 74.1↓−6.7 58.6↓−9.6 55.7↓−0.8 0.0↓−0.2 27.9↓−6.0 11.9↓−9.7

RobustNet [5] 89.3↓−0.4 39.4↑+0.2 73.8↓−0.2 34.8↓−3.8 36.9↓−2.8 33.0↓−9.7 41.2↑+0.6 47.3↓−4.1 83.3↓−1.1 53.9↑+3.3 92.4↓−1.1 46.2↓−0.3 30.1↓−6.5 75.9↓−4.9 57.8↓−10.4 51.9↓−4.6 0.0↓−0.2 24.9↓−9.0 9.6↓−12.0

Fully sup. training domains 89.9↑+0.2 39.1↓−0.1 76.4↑+2.4 43.4↑+4.8 42.3↑+2.6 44.2↑+1.5 43.1↑+2.5 57.3↑+5.9 86.0↑+1.6 56.8↑+6.2 94.4↑+0.9 55.6↑+9.1 43.1↑+6.5 83.4↑+2.6 69.8↑+1.6 59.2↑+2.7 4.0↑+3.8 41.6↑+7.7 25.0↑+3.4

Fully sup. unseen domains 90.9↑+1.2 44.9↑+5.7 74.4↑+0.4 43.2↑+4.6 35.2↓−4.5 39.8↓−2.9 30.7↓−9.9 45.6↓−5.8 85.1↑+0.7 61.5↑+10.9 94.2↑+0.7 49.7↑+3.2 35.3↓−1.3 82.5↑+1.7 65.7↓−2.5 58.3↑+1.8 3.2↑+3.0 38.4↑+4.5 2.7↓−18.9

Fully sup. all domains 93.3↑+3.6 58.4↑+19.2 80.4↑+6.4 56.4↑+17.8 49.7↑+10.0 49.8↑+7.1 48.9↑+8.3 61.3↑+9.9 87.5↑+3.1 66.2↑+15.6 95.5↑+2.0 62.8↑+16.3 50.0↑+13.4 88.1↑+7.3 79.3↑+11.1 77.4↑+20.9 6.9↑+6.7 57.0↑+23.1 34.1↑+12.5

Table 4. Quantitative comparison on unseen domains WildDash [19], IDD [14] and KITTI [1], averaged per class. The reported
deltas (in green and red) are with respect to each experiment’s baseline. The highest mIoU per category is highlighted as follows: 1) bold,
when comparing all methods, and 2) underlined, excluding fully supervised models in the comparison (UDA and DG methods only). Best
viewed digitally.

periment 1.A, mixing BDD-100K with Mapillary Vistas
leads to a highly heterogeneous unlabeled domain, as it
consists of Mapillary Vistas, which is already heteroge-
neous by itself. In experiment 1.B, mixing BDD-100K with
Cityscapes leads to a dataset with a lower variability, as both
datastets contain images captured at very specific geograph-
ical locations. As a result, there are two distinct settings that
could provide interesting results, as presented in Sec. 5 of
our main manuscript.

Finally, the unseen domain Du, contains one clear het-
erogeneous dataset with WildDash, complemented by two
homogeneous datasets, IDD and KITTI. Because these dif-
ferent types of datasets are used as Du, it is very challenging
for UDA or DG methods to generalize well to all these un-
seen datasets, which is a desired property, as these datasets
should represent the wild in our evaluation framework.

4. Generalization to unseen domains: class
analysis

Tab. 4 shows the per-class mIoU scores of UDA, DG
and fully supervised methods on the unseen domains for ex-
periments 1.A and 1.B. Results are averaged over the three
datasets representing the unseen domains to obtain a single
value per class.

From this table, it can be noticed that overall, the fully
supervised model trained on all domains provides a strong
‘upper bound’ for both experiments 1.A and 1.B, as it out-
performs all methods over the majority of the classes. Fur-
thermore, comparing just the UDA and DG methods (best
results underlined), it can be seen that the best performing
UDA method ProDA [20], outperforms the other UDA and
DG methods on 15 classes in experiment 1.A, and on 17
classes in experiment 1.B. These results show shows that
domain adaptation methods can improve generalization to
unseen domains for most of the classes, without overfitting
on any specific group of categories such as foreground or
background classes. Finally, it is worth noting that, in ex-

periment 1.A, ProDA even outperforms the fully supervised
model trained on all domains for a single class (person). Al-
though this happens for only one class, it is important to re-
member that ProDA achieves this by using only 7.7% of the
amount of labeled data that the fully supervised model has
access to during training, highlighting the benefit of using
abundant unlabeled data.

5. Discussion on combining UDA and DG
strategies

In Sec. 5 of the main manuscript, we found that UDA
methods consistently outperform existing DG methods on
unseen domains. This is especially true when the labeled
domain is heterogeneous (i.e., in experiment 1.B), as DG
methods even underperform the labeled-domain-only base-
line in that setting. However, DG methods do consider-
ably outperform the baseline in experiment 1.A, where the
labeled domain is homogeneous. Although they do not
outperform UDA methods, they still achieve a consider-
able performance boost. Moreover, UDA and DG methods
achieve their performance boosts with different methods,
by approaching the problem from different perspectives.
Therefore, these types of methods could be complementary
to each other, and combining UDA and DG strategies to
achieve even better results may have potential. Specifically,
the efforts of DG methods to enlarge the training domain
could be combined with the techniques that UDA meth-
ods use to leverage unlabeled data. We hope that our work
sparks ideas for follow-up research in this direction.

References

[1] Hassan Alhaija, Siva Mustikovela, Lars Mescheder, Andreas
Geiger, and Carsten Rother. Augmented reality meets com-
puter vision: Efficient data generation for urban driving
scenes. IJCV, 2018.



[2] Nikita Araslanov and Stefan Roth. Self-supervised augmen-
tation consistency for adapting semantic segmentation. In
CVPR, pages 15384–15394, 2021.

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. TPAMI, 2018.

[4] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and
Yair Weiss, editors, ECCV, 2018.

[5] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne Taery
Kim, Seungryong Kim, and Jaegul Choo. Robustnet: Im-
proving domain generalization in urban-scene segmentation
via instance selective whitening. In CVPR, pages 11580–
11590, 2021.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
pages 3213–3223, 2016.

[7] Li Gao, Jing Zhang, Lefei Zhang, and Dacheng Tao. DSP:
dual soft-paste for unsupervised domain adaptive semantic
segmentation. In ACM Multimedia, pages 2825–2833, 2021.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[9] Suhyeon Lee, Hongje Seong, Seongwon Lee, and Euntai
Kim. Wildnet: Learning domain generalized semantic seg-
mentation from the wild. CoRR, abs/2204.01446, 2022.

[10] Y. Li, L. Yuan, and N. Vasconcelos. Bidirectional learn-
ing for domain adaptation of semantic segmentation. CVPR,
pages 6929–6938, 2019.

[11] Haoyu Ma, Xiangru Lin, Zifeng Wu, and Yizhou Yu. Coarse-
to-fine domain adaptive semantic segmentation with pho-
tometric alignment and category-center regularization. In
CVPR, pages 4051–4060, 2021.

[12] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, and
Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. In ICCV, pages 5000–5009,
2017.

[13] Fabrizio J. Piva and Gijs Dubbelman. Exploiting image
translations via ensemble self-supervised learning for unsu-
pervised domain adaptation. CoRR, abs/2107.06235, 2021.

[14] Girish Varma, Anbumani Subramanian, Anoop M. Nam-
boodiri, Manmohan Chandraker, and C. V. Jawahar. IDD:
A dataset for exploring problems of autonomous navigation
in unconstrained environments. In WACV, pages 1743–1751,
2019.

[15] Qin Wang, Dengxin Dai, Lukas Hoyer, Olga Fink, and
Luc Van Gool. Domain adaptive semantic segmentation with
self-supervised depth estimation. CoRR, abs/2104.13613,
2021.

[16] Yuxin Wu and Kaiming He. Group Normalization. In ECCV,
2018.

[17] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-

rell. BDD100K: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, pages 2633–2642, 2020.

[18] Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto L.
Sangiovanni-Vincentelli, Kurt Keutzer, and Boqing
Gong. Domain randomization and pyramid consistency:
Simulation-to-real generalization without accessing target
domain data. In ICCV, pages 2100–2110. IEEE, 2019.

[19] Oliver Zendel, Katrin Honauer, Markus Murschitz, Daniel
Steininger, and Gustavo Fernández Domı́nguez. Wilddash
- creating hazard-aware benchmarks. In ECCV, pages 407–
421, 2018.

[20] Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong Wang,
and Fang Wen. Prototypical pseudo label denoising and tar-
get structure learning for domain adaptive semantic segmen-
tation. In CVPR, pages 12414–12424, 2021.

[21] Qianyu Zhou, Zhengyang Feng, Qiqi Gu, Jiangmiao Pang,
Guangliang Cheng, Xuequan Lu, Jianping Shi, and Lizhuang
Ma. Context-aware mixup for domain adaptive semantic seg-
mentation. CoRR, abs/2108.03557, 2021.


