
Fast Differentiable Transient Rendering
for Non-Line-of-Sight Reconstruction

(Supplementary Material)

Markus Plack Clara Callenberg Monika Schneider Matthias B. Hullin
University of Bonn

Bonn, Germany
{mplack,callenbe,hullin}@cs.uni-bonn.de, moschn@uni-bonn.de

In Section 1 we explain the forward model and the derivation of the backward pass for both the confocal scanning setup
and the exhaustive case. Section 2 gives more details on the reconstruction algorithms and Section 3 lists the experiments
with their respective timings. Finally, Section 4 shows intermediate steps of the depth map and albedo optimization for one
reconstruction of the statue, and a single optimization of a transform with a larger amount of translation and rotation.

1. Derivations
We introduce the notation and common functions used here in Section 1.1. Section 1.2 gives a detailed derivation of the

gradients from our forward model for the confocal case and Section 1.3 outlines the necessary changes when applying our
method to simulate a non-confocal measurement.

1.1. Foundations

Here, we define functions used later on and give their derivatives. More symbols and their definition are given in Table 1.

Normal Vector The (unnormalized) normal vector of a triangle.

n(ti) = (vi,1 − vi,0)× (vi,2 − vi,0) (1)

Jn(ti) =

0 (vi,2 − vi,1)z −(vi,2 − vi,1)y
−(vi,2 − vi,1)z 0 (vi,2 − vi,1)x
(vi,2 − vi,1)y −(vi,2 − vi,1)x 0

0 −(vi,2 − vi,0)z (vi,2 − vi,0)y
(vi,2 − vi,0)z 0 −(vi,2 − vi,0)x
−(vi,2 − vi,0)y (vi,2 − vi,0)x 0

0 (vi,1 − vi,0)z −(vi,1 − vi,0)y
−(vi,1 − vi,0)z 0 (vi,1 − vi,0)x
(vi,1 − vi,0)y −(vi,1 − vi,0)x 0

(2)

Centroid The centroid of a triangle.

c(ti) =
1

3
(vi,0 + vi,1 + vi,2) (3)

∇tic(ti) =
1

3
19 (4)

Symbol Definition

I(T)
Rendering function of the transient image
I(T) ∈ R|S|×B for a confocal setup
I(T) ∈ R|L|×|S|×B for an exhaustive setup

v(x, y) Binary visibility between points x and y
α Light transport function
ω Weighting function

b A transient bin index
B Number of transient bins
ϕ Bin offset of the first bin
δ Bin width

T A set of triangles T = {t1, . . . , tn}
ti A triangle ∈ R9 of three vertices vi,0, vi,1, vi,2
vi,j The j-th vertex ∈ R3 of triangle i
ai Albedo values ∈ R3 of triangle i

s A scan point on the visible wall
ns Surface normal at s
S The set of all scan points
os The position of the scanning device
l A laser point on the visible wall
nl Surface normal at l
L The set of all laser points
ol The position of the laser source

1n A vector of ones of length n
Jf Jacobian of a function f
⊗ Kronecker product

Table 1. Definitions of symbols used

BRDF We chose to set the average vertex albedo as a constant term for lambertian reflection. Other differentiable BRDF
functions could also be implemented.

a(ai) =
1

3
(ai,0 + ai,1 + ai,2) (5)

∇aia(ai) =
1

3
13 (6)

1.2. Confocal Setup

We start by recapitulating the formulation of our rendering function I and its derivative before giving an explanation of
the light transport function α, the weighting function ω, and their respective derivatives. For a derivation of how to arrive
at this formulation of the rendering function and some intuition behind it we refer to the original work of Iseringhausen and
Hullin [2]. The rendering function is defined as

I(T) =

(
n∑

i=1

v(s, c(ti))α(s, ti)ω(s, b, ti)

)
s,b

. (7)

For an arbitrary loss function L(I) we compute gradients for each triangle ti and for each triangle’s albedo ai through
backpropagation as

∇tiL =
∑
s∈S

B−1∑
b=0

∂L

∂Is,b
∇tiIs,b (8)

2

and

∇ai
L =

∑
s∈S

B−1∑
b=0

∂L

∂Is,b
∇ai

Is,b. (9)

Note that we can combine both computations in a single function to reduce overhead. As they are conceptually similar we
will only state formulas for the albedo gradient where they differ from the coordinate gradient. Most importantly, the weights
ω do not depend on the albedo and hence ∇ai

ω will be zero. We reformulate this as

∇tiL =
∑
s∈S

v(s, ti)

(
∇tiα(s, t)

B−1∑
b=0

∂L

∂Is,b
ω(s, b, t) + α(s, t)

B−1∑
b=0

∂L

∂Is,b
∇tiω(s, b, t)

)
. (10)

This formulation is only correct for points where the visibility is constant within an ϵ-ball around ti as the visibility function
is discontinuous along edges. We opt to ignore gradients resulting from visibility changes to keep computational complexity
low.

Light Transport Function Let us first state the full definition of the light transport function α to provide intuition of the
individual terms before simplifying the expression for the implementation and the gradient computation:

α(s, ti) = a(ti)∥n(ti)∥
1

∥s− c(ti)∥4
⟨ns,

c(ti)− s

∥c(ti)− s∥
⟩2⟨ n(ti)

∥n(ti)∥
,

s− c(ti)

∥s− c(ti)∥
⟩2 (11)

From left to right, the individual terms are the BRDF function, the area of the triangle, the inverse-square law between the
wall and the centroid (and back), the cosine between the wall normal and the ray, and the cosine between the triangle normal
an the ray. We can simplify the expression to

α(s, ti) = a(ti)
⟨ns, c(ti)− s⟩2⟨n(ti), c(ti)− s⟩2

∥n(ti)∥∥c(ti)− s∥8
. (12)

We compute the gradient of α with respect to the triangle using logarithmic derivatives as

∇tiα(s, ti) = α(s, ti)

(
∇tia(ti)

a(ti)
+
∇ti∥n(ti)∥−1

∥n(ti)∥−1
+
∇ti∥c(ti)− s∥−8

∥c(ti)− s∥−8
+

∇ti⟨ns, c(ti)− s⟩2

⟨ns, c(ti)− s⟩2
+
∇ti⟨n(ti), c(ti)− s⟩2

⟨n(ti), c(ti)− s⟩2

)
,

(13)

which yields

∇tiα(s, ti) = α(s, ti)

(
− Jn(ti)

n(ti)

∥n(ti)∥2
− 8

3∥c(t)− s∥2
13 ⊗ (c(ti)− s)+

2

3⟨ns, c(t)− s⟩
13 ⊗ ns+

2

⟨n(t), c(t)− s⟩
(Jn(ti) (c(t)− s) +

1

3
13 ⊗ n(ti))

)
.

(14)

The gradient with respect to the albedo values of the vertices can be computed as

∇ai
α(s, ti) = ∇ai

a(ti)
⟨ns, c(ti)− s⟩2⟨n(ti), c(ti)− s⟩2

∥n(ti)∥∥c(ti)− s∥
. (15)

Weighting Function To distribute the computed α on the affected transient bins, we compute the corresponding bin of
each vertex using the total distance of the light traveled:

θ(vi,j) = (2∥vi,j − s∥2 + 2∥s− os∥2 − ϕ)/δ (16)

3

Note that the distance between the wall point and the sensor (∥s−os∥2) is constant for all vertices. To keep the implementation
flexible we provide options in the interface to ignore this term completely when rectified measurements are considered. The
gradient of θ is

∇vi,jθ(vi,j) =
2

δ∥vi,j − s∥2
(vi,j − s) (17)

In the following, we assume that vi,0, vi,1, and vi,2 are sorted in order of ascending distance θ(·). Outside the affected
bins we set

ω(s, b, ti) = 0, b < ⌊θ(vi,0)⌋ ∨ b > ⌊θ(vi,2)⌋. (18)

This greatly simplifies the computation of both the forward and the backward pass, as θ(vi,0) and θ(vi,2) can be computed
early on.

Let us first consider the special case ⌊θ(vi,0)⌋ = ⌊θ(vi,1)⌋ = ⌊θ(vi,2)⌋. Here, all light falls into a single bin and we can
set

ω(s, ⌊θ(vi,0)⌋, t) = 1 (19)

and the gradient is a zero vector.
In the case where ⌊θ(vi,0)⌋ < ⌊θ(vi,2)⌋, we use a trapezoidal filter for the weights as shown in Fig. 1. We consider the

computation of weights as the area under the first triangle ω1 and the second triangle ω2 independently and set ω = ω1 +ω2.
Using this approach we can take advantage of the symmetry between both cases which lets us reuse the same function and its
derivative. Note that only the weight of bin ⌊θ(vi,1)⌋ is composed of the area under both triangles, while for all other weights
one term will be zero.

To construct the weights we define a central value

ωc(ti) =
2

θ(vi,2)− θ(vi,0)
(20)

which is located at θ(vi,1). The corresponding gradient is

∇tiωc(ti) = −
4

δ(θ(vi,2)− θ(vi,0))2

−∇vi,0θ(vi,0)0

0
0

∇vi,2θ(vi,2)

 . (21)

In the special case where either the first or the second triangle falls into a single bin, i.e. ⌊θ(vi,0)⌋ = ⌊θ(vi,1)⌋ or
⌊θ(vi,1)⌋ = ⌊θ(vi,2)⌋, we can trivially compute the weights as the full area under the triangles as

ω1(s, b, ti) =
1

2
ωc(ti)(θ(vi,1)− θ(vi,0)), or (22)

ω2(s, b, ti) =
1

2
ωc(ti)(θ(vi,2)− θ(vi,1)). (23)

Otherwise we compute the weights using a function ρ(x1, y1, x2, y2, b) that computes the area under the line defined by
the points (x1, y1) and (x2, y2) between b and b+ 1. With this, we can set

ω1(s, b, ti) = ρ(θ(vi,0), 0, θ(vi,1), ωc(ti), b) (24)
ω2(s, b, ti) = ρ(θ(vi,1), ωc(ti), θ(vi,2), 0, b) (25)

For the definition of ρ we need to distinguish special cases for the first and the last bin. All equations are derived from the
length of the base times the height at the center of the bin, which is interpolated from the line definition:

ρ(x1, y1, x2, y2, b) =

(b+1−x1)(y1+(1

2 (x1+b+1)−x1)
y2−y1
x2−x1

) ,b=⌊x1⌋

y1+(b+ 1
2−x1)

y2−y1
x2−x1

,⌊x1⌋<b<⌊x2⌋

(x2−b)(y1+(1
2 (b+x2)−x1)

y2−y1
x2−x1

) ,b=⌊x2⌋
(26)

4

θ(�i��) θ(�i��) θ(�i��)

ω1

ωc

b b+1 b b+1

ω1

ω1

ω2

ω2

ω2

⌊θ(�i��)⌋ + 1 ⌊θ(�i��)⌋

Figure 1. Visual representation of the computation of weights ω for various bins showing the intermediate and boundary cases

For sake of completeness, the gradients for each case are stated below. x1, y1, x2, and y2 need to be substituted as stated
in Eq. (24) and Eq. (25) to arrive at the final result. To shorten the notation we write the gradient of δ(x1, y1, x2, y2) :=
y2(ti)−y1(ti)
x2(ti)−x1(ti)

as

∇ti
δ(x1,y1,x2,y2)=

(∇ti
y2(ti)−∇ti

y1(ti))(x2(ti)−x1(ti))−(y2(ti)−y1(ti))(∇ti
x2(ti)−∇ti

x1(ti))

(x2(ti)−x1(ti))
2 (27)

b = ⌊x1⌋:

∇tiρ(x1, y1, x2, y2, b) =∇tiy1(ti)(b+ 1− x1(ti))−∇tix1(ti)y1(ti)

−∇tix1(ti)(b+ 1− x1(ti))δ(x1, y1, x2, y2)

+
1

2
(b+ 1− x1(ti))

2∇tiδ(x1, y1, x2, y2)

(28)

⌊x1⌋ < b < ⌊x2⌋:

∇tiρ(x1, y1, x2, y2, b) =∇tiy1(ti)−∇tix1(ti)δ(x1, y1, x2, y2)

+
(
b+

1

2
− x1(ti)

)
∇tiδ(x1, y1, x2, y2)

(29)

b = ⌊x2⌋:

∇tiρ(x1, y1, x2, y2, b) =∇tix2(ti)

(
(y1(ti) + (

1

2
(b+ x2(ti))− x1(ti))δ(x1, y1, x2, y2)

)
+ (x2(ti)− b)

(
∇tiy1(ti)

+ (
1

2
∇tix2(ti)−∇tix1(ti))δ(x1, y1, x2, y2)

+ (
1

2
(b+ x2(ti))− x1(ti))∇tiδ(x1, y1, x2, y2))

(30)

1.3. Non-Confocal Setup

The equations of the exhaustive scanning setup conceptually follow those of the confocal setup. Therefore, we will only
detail significant differences to the derivations given before.

The rendering function takes the points l into account and is defined as

I(T) =

(
n∑

i=1

v(l, c(ti))v(s, c(ti))α(l, s, ti)ω(l, s, b, ti)

)
l,s,b

. (31)

The gradient equations simply replace all summations over the scan points S with summations over both S and L.

5

Light Transport Function We adapt the light transport function to the new paths from the laser to l, to the triangle ti, to
the point s and to the detector:

α(l, s, ti) =a(ti) · ∥n(ti)∥ ·
1

∥l − c(ti)∥2
· 1

∥s− c(ti)∥2

· |⟨nl,
c(ti)− l

∥c(ti)− l∥
⟩| · |⟨ns,

c(ti)− s

∥c(ti)− s∥
⟩|

· |⟨ n(ti)

∥n(ti)∥
,

l − c(ti)

∥l − c(ti)∥
⟩| · |⟨ n(ti)

∥n(ti)∥
,

s− c(ti)

∥s− c(ti)∥
⟩|

(32)

We perform a similar simplification and rewrite α as

α(s, ti) = a(ti)
|⟨nl, c(ti)− l⟩| · |⟨ns, c(ti)− s⟩| · |⟨n(ti), c(ti)− l⟩| · |⟨n(ti), c(ti)− s⟩|

∥n(ti)∥∥c(ti)− l∥4∥c(ti)− s∥4
. (33)

Differentiating α using logarithmic derivatives

∇tiα(l, s, ti) = α(l, s, ti)

(
∇tia(ti)

a(ti)
+
∇ti∥n(ti)∥−1

∥n(ti)∥−1
+

∇ti∥c(ti)− l∥−4

∥c(ti)− l∥−4
+
∇ti∥c(ti)− s∥−4

∥c(ti)− s∥−4
+

∇ti |⟨nl, c(ti)− l⟩|
|⟨nl, c(ti)− l⟩|

+
∇ti |⟨ns, c(ti)− s⟩|
|⟨ns, c(ti)− s⟩|

+

∇ti |⟨n(ti), c(ti)− l⟩|
|⟨n(ti), c(ti)− l⟩|

+
∇ti |⟨n(ti), c(ti)− s⟩|
|⟨n(ti), c(ti)− s⟩|

)
(34)

yields

∇tiα(l, s, ti) = α(l, s, ti)

(
− Jn(ti)

n(ti)

∥n(ti)∥2
−

4

3∥c(ti)− l∥2
13 ⊗ (c(ti)− l)−

4

3∥c(ti)− s∥2
13 ⊗ (c(ti)− s)+

1

3⟨ns, c(ti)− l⟩
13 ⊗ nl+

1

3⟨ns, c(ti)− s⟩
13 ⊗ ns+

1

⟨n(ti), c(ti)− l⟩
(Jn(ti) (c(ti)− l) +

1

3
13 ⊗ n(ti))+

1

⟨n(ti), c(ti)− s⟩
(Jn(ti) (c(ti)− s) +

1

3
13 ⊗ n(ti))

)
.

(35)

Weighting Function The equations for the weighting function are mostly unchanged. The only difference is the computa-
tion of the transient bins for each vertex, which is

θ(vi,j) = (∥vi,j − l∥2 + ∥vi,j − s∥2 + ∥l − ol∥2 + ∥s− os∥2 − ϕ)/δ (36)

and its gradient

∇vi,j
θ(vi,j) =

1

δ∥vi,j − l∥2
(vi,j − l) +

1

δ∥vi,j − s∥2
(vi,j − s). (37)

Again, we enable our implementation to ignore ∥l − ol∥2, ∥s− os∥2, or both.

6

2. Algorithms
Here, we give simplified pseudo code listings for the reconstruction algorithms using radial basis function (Algorithm 1)

and depth map (Algorithm 2) representations. Note that all functions except CHECKDELETE in Algorithm 1 also check if
the loss has been reduced and otherwise return the input b. We use Adam [3] for all optimizations. In Algorithm 1 we start
with a learning rate of 0.001 and reduce the learning rate whenever the loss increases, whereas in Algorithm 2 we follow a
learning rate schedule similar to the one proposed by Smith and Topin [6].

Algorithm 1 Reconstruction using radial basis functions

function RECONSTRUCT(transient, resolution, n, subdivide)
b← []
for all i ∈ {0, ..., n− 1} do

if i ≡ 0 mod 5 or |b| = 0 then
b← ADDVOLUME(b, transient, resolution)

else if i ≡ 1 mod 5 then
b← ADDSURFACE(b, transient, resolution)

else if i ≡ 2 mod 5 then
b← SPLIT(b, transient, resolution)

else if i ≡ 3 mod 5 then
b← CHECKDELETE(b, transient, resolution)

else if i ≡ 4 mod 5 then
b← REFINE(b, transient, resolution)

end if
if i ∈ subdivide then

resolution← 2 · resolution
end if

end for
return b

end function

function ADDVOLUME(b, transient, resolution)
trasientTest← RENDER(b, resolution)
transientError← max(0, transient− transientTest)
volumeError← BACKPROJECT(transientError, resolution)
samples← MULTINOMIAL(volumeError, 5)
b← b

⋃
samples

b← OPTIMIZE(b, transient, resolution)
return b

end function

function ADDSURFACE(b, transient, resolution)
loss← RENDER LOSS(b, resolution, transient)
vertsGrad← BACKPROPAGATE TO VERTS(loss)
samples← MULTINOMIAL(vertsGrad, 5)
b← b

⋃
samples

b← OPTIMIZE(b, transient, resolution)
return b

end function

7

function SPLIT(b, transient, resolution)
samples← MULTINOMIAL(b, 30)
b← b \ samples
samples.sigma← 0.75 · samples.sigma
offset← RANDOM()
b← b

⋃
(samples + offset)

⋃
(samples− offset)

b← OPTIMIZE(b, transient, resolution)
return b

end function

function CHECKDELETE(b, transient, resolution)
loss← RENDER LOSS(b, resolution, transient)
for all bt ∈ b do

lossTest← RENDER LOSS(b \ bt, transient)
if lossTest ≤ loss · deleteFactor then

loss← lossTest
b← b \ bt

end if
end for
return b

end function

function REFINE(b, transient, resolution)
b← OPTIMIZE(b, transient, resolution)
return b

end function

Algorithm 2 Reconstruction using a depth map

function RECONSTRUCT(transient, resolution, n, subdivide)
depth← INIT DEPTH(resolution)
color← INIT COLOR(resolution)
for all i ∈ {0, ..., n− 1} do

if i ∈ subdivide then
depth← SUBDIVIDE(depth)
color← SUBDIVIDE(color)

end if
// Render depth map and compute losses
transientRendered← RENDER(depth, color)
Ldata ← ∥transientRendered− transient∥22
TVdepth ← TV(depth)
TVcolor ← TV(color)
L← Ldata + λdTVdepth + λcTVcolor
// Apply gradient descent step and clamp parameters
grad← BACKWARD(L)
depth, color← APPLY GRAD(depth, color, grad)
depth← min(max(depth, 0), 1)
color← min(max(color, 0), 1)

end for
return depth, color

end function

8

3. Experiments and Timings

Scene Measurement Size Target Runtime Source

Zaragoza Bunny 512× 64× 64 Gaussian Rbf 4 m, 51 s [1]
512× 64× 64 Depth Map & Color 1 m, 34 s

Sinogram 512× 360 Gaussian Rbf 2 m, 25 s
Mannequin 512× 224× 59 Gaussian Rbf 11 m, 11 s [7]
Mannequin Synthetic 512× 224× 59 Gaussian Rbf 7 m, 48 s Ours
Spot (Cow) 512× 64× 64 Gaussian Rbf 10 m, 27 s Ours
Statue (180 min) 512× 512× 512 Depth Map & Color 2 m, 21 s [4]

512× 128× 128 Depth Map & Color 2 m, 21 s
512× 64× 64 Depth Map & Color 2 m, 35 s
512× 32× 32 Depth Map & Color 39 s

Diffuse S 256× 32× 32 Depth Map & Color 2 m, 29 s [5]
Flat-field 256× 32× 32 Depth Map & Color 2 m, 32 s
Bunny 256× 32× 32 Position & Rotation 0.97 s Ours
Two Armadillos 256× 64× 32 32× 2 Pos. & Rot. 2 m, 16 s Ours
Self-Supervised Training (32×)256× 16× 16 Network Parameters 67ms/batch Ours

Table 2. All experiments and runtimes. Runtimes are measured on a desktop computer with a NVIDIA GeForce
RTX 2080 Ti GPU with 11 GB VRAM. The VRAM needed to reconstruct a 512× 64× 64 transient is about 1.4
GB.

4. Additional Results
Bunny The optimization of a transformation of a bunny is shown in Fig. 2. Even though the initial position and rotation
are quite different from the target, the optimization converges quickly towards the true position.

Initial

Final

Reference/Input

Figure 2. Optimizing position and rotation of a known object with 4968 triangles takes 0.97 seconds
for a confocal measurement with a 32× 32 resolution and 256 temporal bins

Statue Intermediate steps of the reconstruction of the statue are shown in Fig. 3. This example uses a 32× 32 subset of the
180 min. measurement. We double the resolution of the depth map after 300 and 800 iterations.

9

Iteration 0 Iteration 300 Iteration 600 Iteration 900

64x48 64x48 128x96 256x192
Figure 3. Optimization of the Statue measurement. We show the evolution of the shape (top and center
row) and albedo (last row) separately for a better visualization. The resolution of the depth and albedo
map is listed below the images

References
[1] Miguel Galindo, Julio Marco, Matthew O’Toole, Gordon Wetzstein, Diego Gutierrez, and Adrian Jarabo. A dataset for benchmarking

time-resolved non-line-of-sight imaging, 2019.
[2] Julian Iseringhausen and Matthias B Hullin. Non-line-of-sight reconstruction using efficient transient rendering. ACM Transactions

on Graphics (TOG), 39(1):1–14, 2020.
[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[4] David B Lindell, Gordon Wetzstein, and Matthew O’Toole. Wave-based non-line-of-sight imaging using fast fk migration. ACM

Transactions on Graphics (TOG), 38(4):1–13, 2019.
[5] Matthew O’Toole, David B Lindell, and Gordon Wetzstein. Confocal non-line-of-sight imaging based on the light-cone transform.

Nature, 555(7696):338–341, 2018.
[6] Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using large learning rates. In Artificial

intelligence and machine learning for multi-domain operations applications, volume 11006, pages 369–386. SPIE, 2019.
[7] Andreas Velten, Thomas Willwacher, Otkrist Gupta, Ashok Veeraraghavan, Moungi G Bawendi, and Ramesh Raskar. Recovering

three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature communications, 3(1):1–8, 2012.

10

