
A. Supplementary material – Overview
In this supplementary material:

• we justify design choices and assumptions made in the
main paper (Sections B-F);

• we show implementation details of our approach (Sec-
tion G);

• we provide additional failure cases (Section H);

• we provide more qualitative results on DAVIS2016,
SegTrack v2 and FBMS-59 (Section I).

B. Justifying only using the flow between adja-
cent frames

Our formulation, in Eq. (1) of the main paper, only in-
volves the optical flow between adjacent frames (forward
and backward). As discussed in Section 3 of the main pa-
per, it can be related to the tridiagonal affinity matrix A in
Eq. (4). We remark at the end of Section 3.3 that we could
have used a denser matrix correlating more faraway frames,
but that the optical flow between frames that are distant in
time is less reliable.

To validate our choice of only using the optical flow be-
tween adjacent frames, we consider here the following vari-
ant of our objective function, where we introduce warps be-
tween more distant frames (up to some constant T ):
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Max. frame distance DAVIS2016
for optical flow J " F "

T = 1 76.8 77.0
T = 2 74.0 71.3
T = 3 67.1 61.8

Table 3: Study of the distance between frames for flow
consistency enforcement. We consider different values
of T in Eq. (10) and evaluate on DAVIS2016 using our
best configuration (DINO [ViT] + ARFlow + Opt) without
CRF post-processing. The best performance is achieved for
T =1, coinciding with the tridiagonal matrix configuration.

Table 3 shows that using a time horizon of a single frame
is not only enough but actually better than considering the
optical flow between more distant frames. In fact, using
the flow regarding only the preceding and the succeeding

frames already ties together all frames in the sequence.
Additional terms with optical flows between more distant
frames may actually introduce noise because of worse esti-
mations due to larger displacements, deformations and oc-
clusions.

C. Using the cross-entropy vs the dot product
In Section 3.4 of the main paper, we replace the dot prod-
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by cross-entropies, respectively:
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This was motivated empirically, as we observed that the
cross-entropy was providing a better performance. Table 4
reports the quantitative results of this experiment.

Measurement of DAVIS2016
mask deviation J " F "
Cross-entropy 76.8 77.0
Dot product 62.1 60.4

Table 4: Dot product vs cross-entropy. Using the cross-
entropy between two vectors in our objective function rather
than their dot product leads to a significant improvement of
+14.6% in J and +16.6% in F .

D. On the Constant Norm Constraint in Eq. (3)
We estimate the second largest eigenvector of W via a

maximization problem over a vector X under the constraint
that kXk2 is constant, as stated in Eq. (3) in the main paper.
At the end of Section 3.4, we claim that since the xp vectors
remain close to the bxp vectors, kXk2 =

qP
p
(kbxpk2)2

remains approximately constant during optimization, thus
satisfying the constraint in Eq. (3) up to a constant factor ofp
N .
Table 5 shows empirically that this constraint is indeed

approximately met at each stage of the global optimization
process.

E. Approximation in Eq. (8)
In the main paper, we assumed the following approxima-

tion:
x>
p
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Ap xp ⇡ bx>
p
xp . (11)



L-BFGS iteration Theoretical Actual average
number norm of bxp norm of bxp

1 1 1.003
2 1 1.001
3 1 1.007
4 1 1.022
5 1 1.022

Table 5: Study of the constant norm constraint approxi-
mation. We study the average of kbxpk2 over all frames of
all sequences in the DAVIS2016 dataset at each iteration of
our global optimization (using L-BFGS). We observe that
the deviations to the theoretical norm of 1 are small, which
in turns means that our approach of not using any explicit
constraint is valid.

The derivation of this approximation is given below.
Since Wp = D

–1
p

Ap is a row-normalized stochastic ma-
trix, the largest eigenvalue associated to its first eigenvec-
tor is 1. Besides, our initial mask estimate bxp is com-
puted as the second largest eigenvector of Wp via Power
Iteration Clustering (PIC) [44]. According to [52, 44], if
K clusters are well-separated, then the significant eigenval-
ues of Wp, noted �1 � . . . ��K , are such that �i/�1 ⇡ 1
for all i2 {1, ...,K}. Consequently, if the foreground ob-
ject is well-separated from the background (K � 2), we may
assume that �2 ⇡�1 =1. As bxp approximates the second
largest eigenvector of Wp, we have:

Wp bxp ⇡ �2 bxp ⇡ bxp . (12)

Therefore, considering also that xp deviates little from bxp,
i.e., xp ⇡ bxp, we have:
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F. Dealing with Inaccurate Optical Flow
Our method relies on predicted optical flows. As they

can be wrong or poor quality, they may introduce noise dur-
ing the computation of the initial mask estimates and the
optimization. In order to reduce the influence of this noise,
we eliminate poor quality optical flow predictions. Given
a predicted flow �

p,q
, we first warp frame q to frame p.

Next, we calculate the difference image between frame p

and the reconstructed frame p̂. The locations with high re-
sponse on the difference image correspond to wrong or poor
quality optical flow predictions. We use k-th percentile of
the difference image as a threshold value to eliminate the

poor quality optical flow predictions. The locations under
the calculated threshold value indicate where optical flow
fails to produce the accurate flows. We exclude these opti-
cal flow predictions from both the computation of the initial
mask estimates and the optimization. We experimentally set
k as 90-th percentile.

G. Implementation Details
All our experiments are implemented with PyTorch [58].

We use the L-BFGS [7] with learning rate of 1 to optimize
our objective function. The weight � in Eq. 1 is set to be 10.

We use DINO pretrained on ImageNet as appearance
features. Due to their low resolution, we upscale the initial
eigenvectors to the required resolution and run the full opti-
mization pipeline. The optimized eigenvectors can be later
either thresholded or clustered with K-means to obtain the
final masks. We choose K-means as it is a more universal
method that does not require finding threshold parameters.
The final segments are then refined using CRF, as [90, 89].

We use the ARFlow model pretrained on the CityScapes
[17] dataset in a self-supervised manner to predict optical
flow. In ablation studies, we also use the RAFT model [73]
for comparison, which is trained in a supervised manner
with labeled data from the Sintel dataset [6].

H. Additional Failure Cases
In Figure 6, we show more failure examples of our ap-

proach. The first row shows another example of overseg-
mentation, where flowing particles are being segmented
as foreground. The second row shows undersegmentation.
The last row shows the inability of our approach to capture
very fine details, such as the thin cables of the paraglider.

I. More Qualitative Results
On the next pages (Figures 7-19), we show more qual-

itative results of our approach, where we compare to the
CIS [90] method, which is the third best self-supervised
video object segmentation (VOS) method after ours, ac-
cording to Table 2 in the main paper. (DyStab [89], which
is the second best self-supervised VOS method, did not re-
lease code to rerun these experiments nor mask results).

Compared to CIS, our method is more successful at seg-
menting objects as a whole and capturing finer details of
object boundaries.

J. Use of Existing Datasets and Codes
For the experiments, we used several datasets that are

freely available for research purpose:

• DAVIS 2016 2 [60] is under license CC BY-NC 4.0.
2https://davischallenge.org

https://davischallenge.org


Ours Ground Truth

Figure 6: Failure cases. Our approach has three main fail-
ure modes: over-segmentation in scenes with multiple ob-
jects, under-segmentation, and inability to capture very fine
details.

• SegTrack-v2 3 [42] is under a custom non-commercial,
research-only license, courtesy of Georgia Institute of
Technology,

• FBMS-59 4 [55, 4] is under a custom non-commercial,
research-only license, courtesy of University of
Freiburg.

To compute appearance and flow, we experimented with
the following methods, whose code is freely available for
research purpose:

• DINO5 [9] is under the Apache License 2.0.

• MoCov26 [12] is under the CC BY-NC 4.0 license.

• ARFlow7 [46] is under the MIT License.

• RAFT8 [73] is under the BSD 3-Clause License.

K. Societal Impact
We believe that our approach for the self-supervised dis-

covery and segmentation of objects in videos has very lit-
tle potential for malicious uses (including disinformation,
surveillance, invasion of privacy, endangering security), in
any case not more, e.g., than the hundreds of previously

3https://web.engr.oregonstate.edu/˜lif/
SegTrack2/dataset.html

4https://lmb.informatik.uni-freiburg.de/
resources/datasets/moseg.en.html

5https://github.com/facebookresearch/dino
6https://github.com/facebookresearch/moco
7https://github.com/lliuz/ARFlow
8https://github.com/princeton-vl/RAFT

published methods on supervised object detection and seg-
mentation. Moreover, we are not bound nor promoting any
dataset that would lead to unfairness in any sense.

Besides, the use of our method has a very little envi-
ronmental impact as there is no training phase and as the
optimization is relatively fast and in the same order of mag-
nitude as other approaches.

https://web.engr.oregonstate.edu/~lif/SegTrack2/dataset.html
https://web.engr.oregonstate.edu/~lif/SegTrack2/dataset.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/moseg.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/moseg.en.html
https://github.com/facebookresearch/dino
https://github.com/facebookresearch/moco
https://github.com/lliuz/ARFlow
https://github.com/princeton-vl/RAFT
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Figure 7: Segmentation in sample frames from videos in SegTrack v2.
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Figure 8: Segmentation in sample frames from videos in SegTrack v2.
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Figure 9: Segmentation in sample frames from videos in SegTrack v2.
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Figure 10: Segmentation in sample frames from videos in DAVIS 2016.
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Figure 11: Segmentation in sample frames from videos in DAVIS 2016.
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Figure 12: Segmentation in sample frames from videos in DAVIS 2016.
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Figure 13: Segmentation in sample frames from videos in DAVIS 2016.
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Figure 14: Segmentation in sample frames from videos in DAVIS 2016.
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Figure 15: Segmentation in sample frames from videos in FBMS-59.
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Figure 16: Segmentation in sample frames from videos in FBMS-59.
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Figure 17: Segmentation in sample frames from videos in FBMS-59.
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Figure 18: Segmentation in sample frames from videos in FBMS-59.
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Figure 19: Segmentation in sample frames from videos in FBMS-59.


