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This document provides additional details, which com-

plement the main paper. We provide the complete network

diagram of our generator in Section 1. More implementa-

tion details are contained in in Section 2. The visualization

of input labels under different sparsity can be found in Sec-

tion 3. In Section 4, we demonstrate an intuitive application

of our method. Additional qualitative results are presented

in Section 5. Finally, a discussion about ethical and societal

impacts is contained in Section 6. Also, please refer to our

video supplementary for the example of geometric editing.

1. Generator Overview

Whole Network. The network diagram of our generator is

presented in Figure 1. The figure shows how our proposed

Label Merging Block TLAM is connected to the ASAP-

Net [4] generator, which we use as the backbone.

ASAP-Net Generator. The generator takes the Concept

Tensor Z ∈ R
H×W×d as an input, similar to taking the se-

mantic labels in the original design. It then outputs a ten-

sor of weights, which parameterize the pixelwise spatially-

varying multi-layer perceptrons (MLPs). The MLPs, with

infered weights, compute the final output image by taking

the Concept Tensor Z as their input.

2. Implementation Details

Projection Block. The Projection Block projects each input

label into an embedding space with the same dimensional-

ity. Every input label is processed by one 1x1 convolution

layer, followed by a nonlinear activation. The projection is

a 96-dimensional tensor for each label.

Concept generation Block. The Concept Generation

Block takes the projected tensors as input, and operates over

them in a pixel-wise fashion. For each pixel, we thus have

an embedding vector for each task. We add a label specific-

encoding to the embedding vector of each label, as a way of
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signalizing which task the embedding corresponds to. For

every pixel, the concept generation block processes each set

of encoded labels with a transformer. The transformer con-

sists of 3 layers, where each uses 3 heads.

3. Visualization of input Labels

In Figure 2 we show examples of the input labels from

the Taskonomy dataset. These labels include semantic seg-

mentation, normals, depth, edges and curvature. Further-

more, in Figure 3, 4 and 5 we show examples of labels

from the Taskonomy dataset, with 70%, 50% and 30% label

sparsity. To generate sparse labels, we look at spatial areas

corresponding to distinct semantic segmentation instances.

For the sparsity of S, we randomly drop the labels with S%

probability, independently for every label inside every area.

Higher sparsity means there is a higher probability that a

semantic region will be masked out for all labels.

4. Geometric Image Editing with User Inputs

In order to demonstrate an intuitive application of our

method, we perform image editing by inserting a new object

into the scene. Figure 8 shows how our method can mimic

rendering while allowing the geometric manipulation of an

image. In this application, we render a table in the given

image, by simply augmenting different labels to include la-

bel information derived from a 3D model. Our method is

able to render the table realistically within the image, while

ASAP and SPADE perform unsatisfactorily. Figure 9 shows

an example of removing a certain object from the image by

augmenting the labels.

5. Additional Qualitative Results

In Figure 6 we show images synthesized with our

TLAM model using dense input labels (semantics, cur-

vature, edges, normals and depth), on the Taskonomy

dataset. In Figure 7 we show images synthesized with our
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Figure 1. Label Merging TLAM block and ASAP-Net Backbone. The input labels are processed by the label merging network to output

the Concept Tensor. The ASAP generator takes the Concept Tensor Z ∈ R
H×W×d as an input and outputs a tensor of weights. Those

weights are parameters of pixelwise, spatially-varying, MLPs, which compute the final output image from the Concept Tensor Z.
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Figure 2. Examples of dense input labels. Samples of the Taskonomy dataset with all input labels visualized.

TLAM model using sparse input labels (50% sparsity), on

the Taskonomy dataset. Finally, Figure 10 shows addi-

tional visual comparison on the Cityscapes dataset, where

we compare our TLAM and Sparse-TLAM methods with

SPADE [3] and ASAP-Net [4].

6. Ethical and Societal Impact

This work is going one step further into the image gen-

eration. While bringing great potential artistic value to the

general public, such technology can be misused for fraud-

ulent purposes. Despite the generated images looking real-

istic, this issue can be partially mitigated by learning-based

fake detection [2, 6, 5].

In regards to limitations, our method is not designed with

a particular focus on balanced representation of appearance

and labels. Therefore, image generation may behave unex-

pected on certain conditions, groups of objects or people.

We recommend application-specific strategies for data col-

lection and training to ensure the desired outcome [1, 7].
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Figure 3. Example of sparse labels. One sample from the Taskonomy dataset where input labels have the sparsity of 70%, 50% and 30%.
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Figure 4. Example of sparse labels. One sample from the Taskonomy dataset where input labels have the sparsity of 70%, 50% and 30%.



Image

Semseg Normals Depth Edges Curvature

7
0

%

sp
ar

si
ty

5
0

%

sp
ar

si
ty

3
0

%

sp
ar

si
ty

Figure 5. Example of sparse labels. One sample from the Taskonomy dataset where input labels have the sparsity of 70%, 50% and 30%.
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Figure 6. Images generated using dense input labels. Here we see images generated with our proposed TLAM label merging model,

using dense input labels from the Taskonomy dataset.



Figure 7. Images generated using 50% sparse input labels. Here we see images generated with our proposed TLAM label merging

model, using input labels from the Taskonomy dataset with 50% sparsity.
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Figure 8. Geometric image editing with user inputs. From left to right: original image; curvature label (provided among five) of the

table to be inserted into the image; semantics of the table on the normal map of the scene; generated image using SPADE, ASAP and our

method, respectively. During editing, we use dense labels of the original image, where we introduce five labels derived from a texture-less

3D model of a table (object of interest)– labels are first edited to introduce the object, followed by the image generation using the proposed

TLAM method.
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Figure 9. Object removal. From left to right: original image; mask of the removed object; generated image using SPADE, ASAP and our

method, respectively. This figure shows removal of chairs from the image, by removing their labels. The mask for removal is manually

chosen by the user.

Label Image
SPADE

[3]

ASAP

[4]

TLAM

(Ours)

Sparse-TLAM

(Ours)

Figure 10. Image generation of different methods on Cityscapes. Here we compare generated results of our methods TLAM and

Sparse-TLAM to SPADE and ASAP-Net.


