
ImpDet: Exploring Implicit Fields for 3D Object Detection

Xuelin Qian
Fudan University

xlqian@fudan.edu.cn

Li Wang
Agora

wangli@agora.io

Yi Zhu*

Amazon Inc.
yzhu25@ucmerced.edu

Li Zhang
Fudan University

lizhangfd@fudan.edu.cn

Yanwei Fu†

Fudan University
yanweifu@fudan.edu.cn

Xiangyang Xue
Fudan University

xyxue@fudan.edu.cn

Supplementary Materials

The supplementary document is organized as follows:

• Sec. A elaborates the structure of backbone network in
detail.

• Sec. B describes the formulations of loss objectives
and presents the experimental study of coefficients.

• Sec. C provides some insightful discussion of the can-
didate shifting module.

• Sec. D reports experimental analyses of training con-
figuration and discrepancy.

• Sec. E shows more visualizations of object detection
and implicit fields to further prove the efficacy and ro-
bustness of our proposed ImpDet.

A. The Structure of Backbone Network

Figure 1 shows the details of our backbone network.
(1) For the point-wise branch, we first feed raw point clouds
P = {xi, yi, zi, ri}Ni=1 into a MLP for initial point-wise
features f (p0) ∈ RN×16, where (xi, yi, zi) and ri mean the
coordinates and intensity of point pi, N is the total num-
ber of points. Then, we utilize two stacked VFE layers
[7] with filter numbers of 32 and 64 to obtain initial voxel-
wise features f (v0) ∈ RN×64, where each voxel maintains
a feature vector for points fall in it. The initial point-wise
features with the dimension of 16 are subsequently con-
catenated with the feature of voxel they fall in. After an-
other MLP layer, we obtain the final point-wise features
f (point) ∈ RN×80.

*Work done outside Amazon
†Corresponding author. Dr. Fu is also with Fudan ISTBI—ZJNU Algo-

rithm Centre for Brain-inspired Intelligence, Zhejiang Normal University,
Jinhua, China

(2) For the voxel-wise branch, it consists of five blocks,
where the first and the last blocks have one sparse con-
volution layer, and the three middle blocks contain three
layers. Except for the first block, we set the stride of the
first layer in each block as 2 to gradually down-sample
the features. Specifically, in the last block, we only re-
duce the height of the feature map by half. To maintain
the sparsity, we utilize the submanifold sparse convolution
layer in the last two layers of the second, third and fourth
blocks. The output channels of five blocks are defined as
64 → 32 → 64 → 64 → 128. Given an initial voxel
features f (v0), we utilize these five blocks to progressively
get multi-scale voxel-wise features f (v1) ∼ f (v5). Simi-
lar to [1], we compress the voxel-wise tensor f (v5) by con-
catenating features along z-axis, and further apply a FPN
[2] structure. By concatenating output features, we get 2D
Birds-Eye-View (BEV) map features f (bev) ∈ RL×W×C .
Specifically, we adopt 2 convolutional layers and 2 decon-
volutional layers as FPN structure.

B. The Details of Loss Objectives

The overall loss functions are composed of six terms,
i.e., the candidate shifting loss, the centerness confidence
loss, the implicit function loss, the classification loss, the
box refinement loss and the direction prediction loss,

L = λ1Lofs+λ2Lctrns + λ3Limp

+λ4Lcls + λ5Lbox + λ6Ldir

(1)

where λi is the coefficient to balance each term. As illus-
trated in Fig. 2, we conduct experimental studies to analyze
some coefficients, which are commonly important or asso-
ciated with implicit filed, and empirically set others by de-
fault [5, 1]. As observed, we set λ1 = λ2 = λ4 = 1.0,
λ3 = λ5 = 2.0 and λ6 = 0.2 for all experiments due to its
better performance.

For the first three objectives, we denote the symbols with

𝓟 ∈ ℝ𝑵×𝟒

FC
𝟒 → 𝟏𝟔

VFE
𝟒 → 𝟑𝟐

FC
𝟖𝟎 → 𝟖𝟎

VFE
𝟑𝟐 → 𝟔𝟒

𝒇(𝒗𝟎)

𝒇(𝒑𝒐𝒊𝒏𝒕)

Sp
𝟔𝟒 → 𝟑𝟐

Sp
𝟑𝟐 → 𝟑𝟐

𝒇(𝒗𝟏)	 SM
𝟑𝟐 → 𝟑𝟐

SM
𝟑𝟐 → 𝟑𝟐

Sp
𝟑𝟐 → 𝟔𝟒

𝒇(𝒗𝟐)	 SM
𝟔𝟒 → 𝟔𝟒

SM
𝟔𝟒 → 𝟔𝟒

𝟏
𝟐#

𝟏
𝟐#

Sp
𝟔𝟒 → 𝟔𝟒

SM
𝟔𝟒 → 𝟔𝟒

SM
𝟔𝟒 → 𝟔𝟒

𝟏
𝟐#

𝒇(𝒗𝟑)	

Sp
𝟔𝟒 → 𝟏𝟐𝟖

𝒇(𝒗𝟒)	

𝟏
𝟐#

𝒇(𝒗𝟓) 𝒇(𝒃𝒆𝒗)

FPN

Figure 1. The structure of backbone network. ‘SP’ and ‘SM’ denote the sparse convolution layer and the submanifold sparse convolution
layer respectively; ‘1/2’ means the stride of this layer is 2. The numbers on each rectangle represent the channels of input and output.

Figure 2. Experimental studies for different values of loss coefficients. Best viewed in color and zoom in.

hat ‘∧’ as ground truth, each formulation can be defined as,

Lofs =
1

|Npixel|
∑

i∈Npixel

LsmoothL1

(
p
(ofs)
i , p̂

(ofs)
i

)
(2)

Lctrns =
1

|Npixel|

HW∑
i=1

Lfocal

(
s
(ctrns)
i ,

̂
s
(ctrns)
i

)
(3)

Limp =
1

|Ncenter|
∑

i∈Ncenter

LBCE

(
Hi, Ĥi

)
(4)

where Npixel and Ncenter indicate the set of indices of
positive pixels/candidate centers if they are inside objects’
bounding boxes; ‘| · |’ means the cardinality.

We adopt 3D Intersection-over-Union (IoU) between the
generated bboxes and corresponding ground-truth boxes for
the classification branch. The IoU is further normalize as
the training targets to compute the loss,

ŝ
(iou)
i = min (1, max (0, 5IoUi − 2))

Lcls =
1

k

k∑
i=1

LBCE

(
s
(iou)
i , ŝ

(iou)
i

) (5)

where k is the number of sampled top-k candidate centers,
s
(iou)
i is the predicted classification confidence

For the box refinement branch, we follow [5, 3] to pre-
dict the residuals of center location, box size and orientation

based on the generated boundary boxes, as

Lbox =
1

K

K∑
i=1

1 (IoUi ≥ 0.55)LsmoothL1

(
bi, b̂i

)
(6)

where bi and b̂i are the predicted and ground-truth box
residuals. 1 (∗) denotes the indicator function, its value
equals to 1 if ∗ is true, otherwise, returns 0.

The direction branch outputs a binary value to determine
whether the boundary orientation needs to be flipped, so
that the range of orientation can be extended from [0, π)
to [0, 2π). The loss is defined as,

Ldir =
1

K

K∑
i=1

1 (IoUi ≥ 0.55)Lcross entropy

(
di, d̂i

)
(7)

where di and d̂i are the predicted and ground-truth direc-
tion.

C. More Discussions of Candidate Shifting
Our proposed ImpDet shows a new perspective that di-

rectly benefits from the implicit field learning to achieve
more precise 3D object detection. However, performing
the implicit function for every potential object in global 3D
space would be very computationally expensive, thereby we
introduce the candidate shifting module to dramatically re-
duce the computational costs. It first shifts points to build a
series of 3D local spaces centered on points, then samples
points to select local spaces that are most likely to contain

(a) Before point shifting (b) After point shifting
Figure 3. Centerness statistics of foreground points. Best viewed in color and zoom in.

Figure 4. More visualization results on KITTI val set. (1) The first and second row: the ground-truth boxes and our predicted boxes are
drew in red and green from both front-view and bird-eye-view. (2) The assigned implicit values of sampled raw points and virtual points
are shown in the third and fourth row. The classified inside and outside points are represented in gray and pink respectively. Note that
green and red boxes in the third and fourth rows mean the generated implicit boundaries and the ground-truth boxes, respectively.

potential objects. An intuition is that each object occupies
only a small part of the whole space, and if a local space
is centered on an object’s center, fewer background distrac-
tions and receptive field biases will be introduced during
learning. We argue that the proposed candidate shifting
module is not our primary contribution but plays a key role
in the pipeline. It is different from [6, 4] which shifts posi-
tive points to adjust their features and coordinates for better
object detection.

To further evaluate the effectiveness of Eq. 2 in the can-
didate shifting module, (1) we visualize the centerness of
foreground points of 100 frames randomly chosen from
KITTI val set before and after shifting. Figure 3 shows
that points after shifting are aggregated so that we can suc-
cessfully build a series of 3D local spaces according to ev-
ery clusters. (2) For a comparison, we train a same model
with hard score (0/1) instead of centerness, yielding infe-
rior APMod

3D results (85.12% versus 85.38%) on KITTI val
set. It clearly suggests that using centerness as confidence
score is a good choice to measure the quality of the shifted
centers for sampling.

D. Analyses of Training Configuration and
Variance

We report the details of hyper-parameters setting in the
main paper. Interestingly, even with small configurations,
our proposed method can also converge efficiently. To ver-
ify this, two experiments are conducted by training with
half number of virtual points and candidate centers. On
KITTI val set, we achieve competitive results of 85.22%
and 85.30% on Car@APMod

3D , respectively. Note that both
two parameters can significantly affect the computational
power during training.

On the other hand, all experimental results in the main
paper are achieved with the training seed of 888. To further
evaluate the training stability of our proposed ImpDet, we
run 5 trials on KITTI with different seeds. The standard
deviation of performance is only 0.11%, which shows the
reliability of our experimental analyses and conclusions.

E. More Visualizations of ImpDet
To better show the effectiveness of our proposed Im-

pDet framework, we visualize detection results on KITTI
val split, as illustrated in Fig. 4. Specifically, for each block
(left-top, right-top, left-bottom and right-bottom), we show
detection results from front-view and bird-eye-view in the
first and second rows. The implicit values of sampled raw
points and virtual points are shown in the third and fourth
row respectively. We especially choose two objects from
different distance for better view. Here are several obser-
vations. (1) Our implicit boundary generation stage could
produce high-quality boxes via the classified inside and out-
side sampled raw/virtual points. The size and orientation
of boundaries are further be refined by occupant aggrega-
tion stage significantly. It strongly suggests the effective-
ness of our proposed model and shows a novel perspective
to generate the bounding box with implicit fields. (2) For
close-distance objects, the sampled raw points cover most
of the objects’ surface. Thanks to well assigned implicit
functions, we can easily generate boundary boxes accord-
ing to the inside raw points. (3) For long-distance objects,
the raw points are too sparse to produce a box even with
100% accurate classified points. However, our proposed
virtual sampling strategy can effectively fill empty regions.
And the learned semantic information can help it to perform
implicit function on virtual points, so that we can fit a high-
quality boundary according to both inside raw points and
virtual points.

More visualizations of implicit fields are shown in Fig. 5.
We can see that our implicit function can assign accurate
values to inside raw points and virtual points, which are
leveraged to generate more robust boundary boxes. The
proposed occupant aggregation stage are applied to further
refine the boundary box or discriminate it as false positive
(i.e., areas only with inside points but without bounding
boxes). For some cases where objects have no points due
to occlusion, our ImpDet fails on it. We explain that it is
difficult to generate a candidate center over a large empty
area, and the sampled virtual points cannot learn enough
semantic features from their neighbor raw points.

Figure 5. More visualization results on KITTI val set. The ground-truth and our predicted boxes are drew in red and green. The assigned
inside raw/virtual points are highlighted by purple. Best viewed in color and zoom in.

References
[1] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yany-

ong Zhang, and Houqiang Li. Voxel r-cnn: Towards high
performance voxel-based 3d object detection. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35,
pages 1201–1209, 2021.

[2] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid net-
works for object detection. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 2117–
2125, 2017.

[3] Zhenwei Miao, Jikai Chen, Hongyu Pan, Ruiwen Zhang,
Kaixuan Liu, Peihan Hao, Jun Zhu, Yang Wang, and Xin
Zhan. Pvgnet: A bottom-up one-stage 3d object detec-
tor with integrated multi-level features. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3279–3288, 2021.

[4] Charles R Qi, Or Litany, Kaiming He, and Leonidas J Guibas.
Deep hough voting for 3d object detection in point clouds. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 9277–9286, 2019.

[5] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-
voxel feature set abstraction for 3d object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10529–10538, 2020.

[6] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd: Point-
based 3d single stage object detector. In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages 11037–
11045. IEEE, 2020.

[7] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for
point cloud based 3d object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4490–4499, 2018.

