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1. More Details of Unsupervised Video Sum-
marization Experiment

We used the same key-fragment-based approach for
evaluation [18], where the similarity between a machine-
generated and a user-defined ground-truth summary is rep-
resented by expressing their overlap using the F-Score. This
protocol can be directly applied on the user summaries of
the SumMe dataset, while its application on TVSum re-
quires to transform the original frame-level annotations into
key-fragment-based summaries.

Finally, for a given video and a machine-generated sum-
mary, this protocol matches the latter against all the avail-
able user summaries for this video and computes a set of
F-Scores. For TVSum the final outcome occurs by averag-
ing the computed F-Scores, while for SumMe this output
corresponds to the maximum value among the computed F-
Scores [8].

2. More Details about WD, GWD, and CCA
2.0.1 Wasserstein Distance

Wasserstein Distance (WD) is introduced in Optimal Trans-
port (OT), which is a natural type of divergence for reg-
istration problems as it accounts for the underlying geom-
etry of the space, and has been used for multimodal data
matching and alignment tasks [4, 17, 11, 5]. In Euclidean
settings, OT introduces WD W(µ, ν), which measures the
minimum effort required to “displace” points across mea-
sures µ and ν, where µ and ν are values observed in
the empirical distribution. In our setting, we compute the
temporal-pairwise Wasserstein Distance on both visual fea-
tures and language features, considering each feature vec-
tor representing each frame or transcript embedding, which
are (µ, ν) = (V2i, V2(i+1)) and (µ, ν) = (L2j , L2(j+1)) for
i, j ∈ t− 1.

For simplicity without loss of generality, assume µ ∈
P (X) and ν ∈ P (Y) denote the two discrete distributions,
formulated as µ =

∑n
i=1 uiδxi

and ν =
∑m

j=1 vjδyj
,

with δx as the Dirac function centered on x. Π(µ, ν) de-
notes all the joint distributions γ(x, y), with marginals µ(x)
and ν(y). The weight vectors u = {ui}ni=1 ∈ ∆n and
v = {vi}mi=1 ∈ ∆m belong to the n− and m−dimensional
simplex, respectively. The WD between the two discrete
distributions µ and ν is defined as:

WD(µ, ν) = inf
γ∈Π(µ,ν)

E(x,y)∼γ [c(x, y)]

= min
T∈Π(u,v)

n∑
i=1

m∑
j=1

Tij · c (xi, yj)
(1)

where Π(u, v) =
{
T ∈ Rn×m

+ | T1m = u, T⊤1n = v
}

,
1n denotes an n−dimensional all-one vector, and c (xi, yj)
is the cost function evaluating the distance between xi and
yj . The temporal-pairwise WD on both visual and language
features encodes the temporal difference and consistency
within the same domain.

2.0.2 Gromov Wasserstein Distance

Classic OT requires defining a cost function across do-
mains, which can be challenging to implement when the
domains are in different dimensions [14]. Gromov Wasser-
stein Distance (GWD) [12] extends OT by comparing dis-
tances between samples rather than directly comparing the
samples themselves.

Assume there are metric measure spaces (X , dx, µ)
and (Y, dy, ν), where dx and dy are distances on X and
Y , respectively. We compute pairwise distance matrices
Dx and Dy as well as the tensor L ∈ Rnx×nx×ny×ny ,
where Lijkl = L(Dx

ik, D
y
jl) measures the distance be-

tween pairwise distances in the two domains. Intuitively,
L(dx(x1, x2), dy(y1, y2)) captures how transporting x1

onto y1 and x2 onto y2 would distort the original distances
between x1 and x2 and between y1 and y2. The discrete
Gromov-Wasserstein problem is then defined by:

GWD(p, q) = min
Γ∈Π(p,q)

∑
i,j,k,l

LijklΓijΓkl (2)



where (p, q) = (V2k, L2k) is the visual-language feature
pairs. For each tuple (xi, xk, yj , yl), we compute the cost
of altering the pairwise distances between xi and xk when
splitting their masses to yj and yl by weighting them by Γij

and Γkl, respectively. The computed GWD across domain
is to capture the relationship and dependencies between vi-
sual and language domains.

2.0.3 CCA and DCCA

Canonical Correlation Analysis (CCA) is a method for ex-
ploring the relationships between two multivariate sets of
variables, which can learn linear transformation of two vec-
tors in order to maximize the correlation between them,
which is used in many multimodal problems [1, 7]. In our
problem, we apply CCA to capture the cross-domain rela-
tionship. For visual features V2l and language features L2l,
where l ∈ t. We assume (V2l, L2l) ∈ Rn1 × Rn2 has co-
variances (Σ11,Σ22) and cross-covariance Σ12. CCA finds
pairs of linear projections of the two views, (w′

1V2l, w
′
2L2l)

that are maximally correlated:

(w∗
1 , w

∗
2) = argmax

w1,w2

corr
(
w′

1V2l, w
′
2L2l

)
= argmax

w1,w2

w′
1Σ12w2√

w′
1Σ11w1w′

2Σ22w2

(3)

Since the objective is invariant to scaling of ω1 and ω2, the
projections are constrained to have unit variance:

(w∗
1 , w

∗
2) = argmaxw′

1Σ11w1=w′
2Σ22w2=1 w

′
1Σ12w2 (4)

To obtain V2 and L2, Deep CCA (DCCA) is applied in
the framework for nonlinear feature transformation. If we
assign θ1 and θ2 to represent the parameters for f(V1) and
g(L1), respectively, where V1 and L1 represents the low-
level visual and language features, then the transformation
aims at:

(θ∗1 , θ
∗
2) = argmax

(θ1,θ2)

corr (f (V1; θ1) , g (L1; θ2)) (5)

The parameters are trained to optimize this quantity using
gradient-based optimization by taking the correlation as the
negative loss with backpropagation to update the nonlinear
transformation model [1].

3. Ablation Experimental Results of Different
Parameters

In this section, we provide more experimental results
with different parameters, including α, γ, β0, α0, ν0, κ0,
ls, init state, and Nmax. The results are shown in Tables
1,2,3,4,5,6,7,8,9, respectively.

Table 1. Comparison of performance with different α.

α Precision Recall F1-score
1 0.673 0.697 0.685
2 0.669 0.694 0.681
3 0.667 0.686 0.676
4 0.666 0.687 0.676
6 0.670 0.693 0.681
8 0.665 0.698 0.681
10 0.666 0.690 0.678

Table 2. Comparison of performance with different γ.

γ Precision Recall F1-score
1 0.673 0.697 0.685
2 0.649 0.684 0.665
3 0.651 0.686 0.668
4 0.673 0.697 0.685
6 0.672 0.691 0.681
8 0.672 0.690 0.681
10 0.669 0.693 0.681

Table 3. Comparison of performance with different β0.

β0 Precision Recall F1-score
1 0.673 0.697 0.685
2 0.671 0.698 0.684
4 0.664 0.693 0.678
6 0.658 0.685 0.671
8 0.660 0.691 0.675
10 0.660 0.692 0.676

Table 4. Comparison of performance with different α0.

α0 Precision Recall F1-score
20 0.649 0.689 0.668
60 0.651 0.685 0.668

100 0.655 0.691 0.673
160 0.658 0.684 0.671
180 0.660 0.682 0.671
200 0.663 0.686 0.674
300 0.668 0.690 0.679
400 0.666 0.661 0. 663
500 0.673 0.697 0.685
600 0.671 0.693 0.682



Table 5. Comparison of performance with different ν0.

ν0 Precision Recall F1-score
1 0.672 0.680 0.676
2 0.673 0.685 0.679
4 0.670 0.678 0.674
6 0.669 0.686 0.677
10 0.671 0.690 0.680
20 0.671 0.693 0.682

100 0.673 0.697 0.685
200 0.670 0.694 0.682
300 0.671 0.695 0.683
500 0.671 0.690 0.680

Table 6. Comparison of performance with different κ0.

κ0 Precision Recall F1-score
0.25 0.670 0.693 0.681
0.5 0.673 0.697 0.685

0.75 0.668 0.668 0.668
1 0.672 0.697 0.684

1.5 0.671 0.697 0.684
2 0.671 0.696 0.683

2.5 0.668 0.687 0.677

Table 7. Comparison of performance with different ls.

ls Precision Recall F1-score
0.5 0.662 0.685 0.673
1 0.673 0.697 0.685
5 0.671 0.696 0.683
10 0.670 0.690 0.680

Table 8. Comparison of performance with different init state.

init state Precision Recall F1-score
1 0.671 0.695 0.683
2 0.672 0.696 0.684
3 0.673 0.697 0.685
4 0.672 0.691 0.681
5 0.672 0.693 0.682
6 0.673 0.697 0.685
8 0.670 0.688 0.679
10 0.672 0.693 0. 682

Table 9. Comparison of performance with different Nmax.

Nmax Precision Recall F1-score
10 0.672 0.696 0.684
50 0.670 0.697 0.683
90 0.673 0.697 0.685

100 0.668 0.692 0.682
150 0.669 0.687 0.678
200 0.673 0.688 0.680

4. HSMM
Hidden Markov Model (HMM) is a statistical model

which follows the Markov process to identify the hidden
states from a set of observations, which has been widely
used in sequential data problems [3, 13, 6], but the state du-
ration distributions are restricted to a geometric form and
the number of hidden states must be set a priori [16, 10, 9].
To overcome this, Hidden Semi-Markov Model (HSMM)
was proposed [16], where there is a distribution placed
over the duration of every state, tweaking the idea into a
semi-Markov one. However, the number of hidden states
in HMM and HSMM is unknown beforehand, and their
patterns are subject to a specific distribution defined over
a measure space. HMM with Hierarchical Dirichlet Pro-
cess (HDP) extension can be used for inferring arbitrar-
ily large state complexity from sequential and time-series
data [2, 15]. However, the HDP-HMM’s strict Markovian
constraints are undesirable in many settings. To overcome
the issues, Johnson et al. introduced explicit-duration Hi-
erarchical Dirichlet Process Hidden semi-Markov Model
(HDP-HSMM) and provided new methods for sampling in-
ference in the finite Bayesian HSMM [10].

5. The Architecture of DCCA Model
The architecture of the DCCA model and the parameters

used in the main paper is shown in Table 10, respectively,
where one view contains the visual raw features, and the
other view contains the language raw features. The outputs
are transformed high-level visual features and language fea-
tures.

Table 10. DCCA model parameters in the experiments.
Modality Model Parameters

Visual [1024, 512, 256]
Language [1024, 512, 256]

6. Example of Livestream Video
Fig. 1 shows some examples of the videos collected in

our dataset.

Figure 1. Example of livestream videos.

7. Example of Livestream Transcripts
Some transcript examples are shown in Table 11, which

shows the noisy characteristic nature of Livestream video
transcripts.



Table 11. Example of livestream transcripts.

Sentence Offset Transcript

1 79 Good morning, good morning. My name is Kara Sykes and I am in artist here.

2 91 My light is very bright this morning.

3 94 Sometimes you can turn it down.

12 137 I got more sleep than we have been getting so I was like I’m going Live Today.

20 166 Let’s open up Photoshop Screen, but it’s going to be we’re gonna be working in illustrator.

31 204 Let’s go ahead and create.

32 208 I’ve got a sketch, but I’m actually going to work just without it, but what I want to do here is create
some lines.

112 568 Doing letters you never do letters, and I say, I know, but I really wanted to let her his name, so that’s
what I’m doing currently.

146 698 Now when I work for the area that I want to create, but let’s just let’s do this OK, I have my do not
disturb on because at night we keep it off just so that doesn’t wake up.

160 825 Tell you what these type people who create custom type you are amazing.
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