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A. Feature Visualization
In this section, we make a visual demonstration of fea-

tures from different layers to show how CASCADE identi-
fies salient (important) features and refines them to produce
accurate segmentation maps. Figure 1 in this Supplemen-
tary shows that CASCADE adopts the features (i.e., X1,
X2, X3, X4) from the hierarchical encoder backbone net-
work (i.e., ImageNet pretrained PVTv2 [10]) and progres-
sively groups pixels (of lesions) and enhances them. More
specifically, Attention Gates (AGs) add additional (some-
times missing) features using the attention-based fusion of
upsampled features and the features from skip connections.
Afterward, Channel Attention (CA) and Spatial Attention
(SA) identify important features and enhance them which is
evident in Figure 1. It is also visible that CASCADE has
a better feature map after aggregating features from all the
layers of the encoder.

B. Qualitative Results
In this section, we compare the qualitative results of our

proposed CASCADE decoder with state-of-the-art meth-
ods. We use some challenging examples from unseen
ColonDB [8] and ETIS-LaribDB [7]. To train our model,
we use the combined CVC-CLinicDB and Kvasir dataset,
and keep experimental settings the same as described ear-
lier. The results are described next.

B.1. Qualitative results on ColonDB

Figure 2 in this Supplementary shows visual outputs
of different methods on five challenging images from
ColonDB testset. In Figure 2(a), most of the methods are
confused by the artifacts due to illumination and thus pro-
duce false positive results. However, CASCADE effectively
ignores the artifact and correctly segments the lesion area
having no false positives. Although CASCADE misses the
part with low illumination in Figure 2(b), it effectively seg-
ments the right part of the lesion that is ignored by all other
methods. This illumination issue hopefully can be resolved
if we use some relevant data augmentations. CASCADE
correctly segments the low contrast lesion region in Figure
2(c), where all other methods fail even with false positives.
In Figure 2(d), CASCADE and PraNet [3] produce better
results; PolypPVT [2] and PVT-CUP produce false posi-
tives distracting by the illumination effect in the low illu-
mination part. Most of the methods fail to segment the le-
sion in Figure 2(e) due to illumination effects and the noisy
texture of the lesion. However, CASCADE effectively over-
comes such challenges and produces a high-quality segmen-
tation map. From the visual results presented in Figure 2,
we can conclude that due to using attention mechanisms
in a sophisticated way CASCADE overcomes challenges
that exist in images, and produce high-quality segmentation

maps.

B.2. Qualitative results on ETIS-LaribDB

In this Supplementary Figure 3, we present the qualita-
tive results of CASCADE along with state-of-the-art meth-
ods on another set (five) of images taken from the unseen
ETIS-LaribDB testset. In this case, most of the lesions
(polyp) are small and of low contrast (i.e., lesions are hardly
separable from the background), however, we observe sim-
ilar trends in results as ColonDB. In Figure 3(a-e), CNN-
based methods, i.e., UNet [6], UNet++ [11], PraNet [3],
UACANet [5] fail (except PraNet in Figure 3(c)) to seg-
ment the lesions rather lead to false positives. Among the
transformer-based methods, SSFormerPVT [9] shows poor
performance in small lesion segmentation, PolypPVT [2]
fails to segment the lesion in Figure 3(e), and PVT-CUP
fails to segment the lesions in Figure 3(b, e). However,
our CASCADE segments the lesions well in all five images.
Therefore, we can conclude that qualitative results demon-
strate the superior performance of our proposed CASCADE
decoder over state-of-the-art methods.
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Figure 1. Visual demonstration of how CASCADE refines the feature maps (i.e., X1, X2, X3, X4) and produces the accurate segmentation
map. The image is taken from CVC-ClinicDB testset. The features are captured during model evaluation. The model is trained on the
combined CVC-ClinicDB [1] and Kvasir [4] dataset (with the same experimental setup discussed earlier).
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Figure 2. Qualitative results of polyp segmentation on unseen ColonDB. Five challenging images are selected from the ColonDB testset.
As it can be seen, the segmentation maps generated by PVT-CASCADE (our) have strong similarity with the GroundTruth (GT).

Figure 3. Qualitative results of polyp segmentation on unseen ETIS-LaribDB. Five challenging images with small lesion (polyp) regions are
selected from the ETIS-LaribDB testset. As it can be seen, PVT-CASCADE (our) effectively segments the small lesions and outperforms
all the state-of-the-art methods.


