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This supplementary material contains the following sec-
tions:

• Section 1: How does our method work?

• Section 2: Implementation Details.

• Section 3: Training Algorithm.

• Section 4: Visual Examples

1. How does our method work?

In this section, we will discuss the theoretical basics
why our auto-encoder based domain adaptation framework
works and explain its main advantage over discrepancy
based methods on classifier stream network. The secret
recipe lies in the bottleneck feature representation of the
auto-encoders which is stated using three theorems as fol-
lows: First, we will provide an theoretical explanation and
then we will explain intuitively.

The following theorem characterizes the theoretical base
of our proposed framework. Here we will provide a theo-
retical background of how our system work with motivation
from the work of Qian et al. [4]. Then we will provide an
intuitive explanation.

Considering our auto-encoder based learning framework
depicted in equation 1, 2 and figure 2 in the paper, we can
consider the following assumption:

Assumption 1 : The bottleneck layer feature embedding
distribution of the same classes in the source and the target
domains are same. Formally, if Cs = Ct then, Es(X

s
Cs

) =
Et(X

t
Ct
) where Cs and Ct are the corresponding class la-

bels of source and target domain data.

Assumption 2 : The bottleneck feature distribution of dif-
ferent classes are different. If Cs ̸= Ct then, Es(X

s
Cs

) ̸=
Et(X

t
Ct
). It can be combined with the first part.

Theorem 1 : Let, XC is the set of common feature sam-
ples of both source and target domains of class C. If the
above assumptions hold, For each class C, there exist a
class conditioned domain encoder E∗(XC) and a decoder
D∗(E∗(XC)), and

lim
XC−→∞

1

XC
Lcw MMD(PX̂s−→t

(·|C, V ), PXC
(·|C, V )) = 0

(1)
Here PX̂s−→t

(·|C, V ) is the conditional probability of fea-
ture embedding adaptation from the source to target with
respect to the class C and the domain invariant features V .
The star (*) notation on the encoder and the decoder indi-
cates to include both domains. What about proof of this
theorem. If this motivated from some paper then we should
mention the paper here.

The Theorem 1 can be interpreted as follows. If the num-
ber of samples in XC is high enough to hold the distribu-
tion matching property and if the bottleneck dimension is
properly set, the optimization loss functions presented in
equation 3 and 4 will satisfy the ideal domain adaptation
property presented in equation 10. This ideal domain adap-
tation will match the class-wise feature space distribution
between the source and the target domains. However, if
the auto-encoder bottleneck dimension of the source and
the target domain is optimal, it will only hold the domain
invariant features VC for class C and discard the class-wise
domain specific features Us

C and U t
C . This selection pro-

cedure of domain invariant features VC in the bottleneck
layers of auto-encoders enables effective feature distribu-
tion matching between corresponding classes of source and
target domains.



As stated earlier, almost all of the discrepancy based do-
main adaptation frameworks align the feature space at some
layers in the middle of a classification network.

In figure 1 we show intuitively how the feature represen-
tation space of our auto-encoder framework differs from the
feature representation space of the classification stream net-
work. In classification stream network, the samples of same
class cluster together because it is an intermediate stage of
an classification network. Because of clustering most of the
samples in the feature representation space X̂ of the same
class lose one to one relationship with the input features
X . As a result, the domain adaptation with the discrepancy
based methods in this feature space only works with the
centroids of the clusters of different classes rather than with
the individual samples. This can result to negative transfer
when there are heterogeneity present with the class labels.

On the other hand, the representation space of the bottle-
neck layer of deep auto-encoder is not clustered. The fea-
ture representation space is scattered because of the nature
of the of the optimization function. One to one relation-
ship also hold between the input features X and the fea-
ture representation space X̂ . As a result, during the domain
adaptation optimization, transfer of features from the source
to the target domain occurs all over the regions of fea-
ture representation space rather than just in the clusters of
classes. This way domain adaptation with auto-encoder can
achieve state-of-the-art performance using a simple training
scheme.

2. Implementation Details

We keep the symmetry of the network architecture of the
auto-encoders along the bottleneck layer as shown in fig-
ure 3 in the paper. As a result, we follow the topology of
the encoder layers similarly to the decoder layers just in re-
verse direction. We replace the maxpool layers in the corre-
sponding decoder modules with upsampling layers to keep
the symmetric structure. We use a dense layer of 100 neu-
rons with relu activation as the bottleneck layer. In order
to match the output shape and size with the shape and size
of the input sample, we added an output convolution layer
as the final layer of the decoder segment. The final output
layer has the number of filters same as the number of chan-
nels in the images with a filter size of 3× 3. To implement
the simultaneous learning with both of the auto-encoder, we
also use a dummy layer between the bottleneck layers of
two auto-encoders which maintain the source and the target
auto-encoder in a single graph. The dummy layer does not
affect on weight updates as it consists of a unity weight with
zero activation function.

3. Training Algorithm

Algorithm 1: Training Procedures of Auto-encoder
based Semi-Supervised Domain Adaptation (Au-
toDA)

Input : Source Domain Labeled data,
Ds = {Xs, Y s}, Target Domain Labeled
data, Dt

l = {Xt
l , Y

t
l }, Unlabeled Target

Domain, Dt
u = {Xt

u}, model parameter β,
classifier layers size cl, and bottleneck
feature space size b

Output: End to end trained classifier prediction
network for target domain unlabeled data

1 Match the number of samples class by class
between Ds and Dt

l by randomly resampling the
smaller domain;

2 Sort Ds and Dt
l by class. Initialize the layer weights

of the source and the target auto-encoder
randomly;

3 Set the corresponding loss functions Ls and Lt to
the source and the target auto-encoder respectively;

4 repeat
5 Update weights of the source and target

auto-encoders with batches of data from
{Xs, Xs} and {Xt

l , X
t
l } respectively.

6 until Ls and Lt converges;
7 Take only Encoder module of source Auto-encoder

network and cascade the Classifier network at the
end of it;

8 Freeze the Encoder weights and randomly initialize
the weights of the Classifier network;

9 repeat
10 Optimize the ”Source Encoder + Classifier”

network with Xs, Y s;
11 until Validation Loss converge;
12 Take The Classifier module and cascade with the

target encoder;
13 Freeze the target encoder weights;
14 repeat
15 Optimize the ”Target Encoder + Classifier”

network with labelled target data, {Xt
l , Y

t
l };

16 until Validation loss converge;
17 Estimate the label of the unlabeled samples from

target domain, Dt
u = {Xt

u} with ”Target Encoder
+ Classifier” network;

4. Visual Examples
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Figure 1: Feature representations space of a. Classification stream network, b. Auto-encoder network.

Figure 2: Visual examples from the DomainNet dataset [3]
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Figure 3: Visual examples of predictions of our model from the DomainNet dataset

Figure 4: Some visual examples from the Office31 dataset [2]



Figure 5: Some visual examples of predictions of our model from the Office31 dataset

Figure 6: Visual examples of different digit recognition datasets [1]


