
Supplementary Material
SIUNet: Sparsity Invariant U-Net for Edge-Aware Depth Completion

Avinash Nittur Ramesh Fabio Giovanneschi
Fraunhofer FHR

Wachtberg, Germany
avinash.ramesh@fhr.fraunhofer.de

Marı́a A. González-Huici

1. Summary
We proposed a simple yet effective unguided depth com-

pletion approach that only takes sparse depth images as in-
put and produces dense depth images, and is robust even
towards extremely sparse inputs. During training, learn-
ing depth boundaries is first explicitly enforced through
auxiliary learning on synthetic SYNTHIA dataset with
dense depth and depth contour images (generated using our
method) as supervision, followed by fine-tuning on real-
world KITTI and NYUv2 datasets with only depth images
as supervision.

Here we reiterate the key points of our approach in detail
for more clarity:

• We have proposed an unguided depth completion ap-
proach although guided approaches provide superior
performance. The primary reason is that, for guided
approaches obtaining rectified and curated data of dif-
ferent sensors’ measurements from a customized end-
user system is a tedious and non-trivial task. Because
measurement noise: outliers due to occlusion as a re-
sult of small displacement in viewpoint of sensors, mo-
tion artifacts in dynamic scenarios due to different sen-
sor acquisition time, etc. have to be handled as a pre-
processing step.

• Our approach relies solely only on LiDAR sensor mea-
surements without the need for target domain priors
(RGB or semantic images) during training. Hence it
greatly simplifies the target domain sensor setup.

• We proposed a sparsity invariant U-Net architecture
and show the robustness of our method for extremely
sparse LiDAR measurements.

• To enforce edge-awareness we propose a novel tech-
nique of generating depth contour images and using
them as auxiliary targets during training on source do-
main. Depth contour images facilitate learning struc-
tural information in lieu of semantic information (e.g.

in RGB or semantic images), making the network
edge-aware and generic towards unseen classes in the
datasets, as shown by generalizing on indoor and out-
door datasets captured from different sensor setups,
and containing unseen classes.

• The speciality is that there are no branch-outs in our
network, resulting in end-to-end feature sharing. The
advantage of this is that for the same number of net-
work parameters our network shares all the parameters
and utilizes them towards depth completion in contrast
to the networks with branch-outs where only some pa-
rameters are utilized for the primary task of depth com-
pletion, whereas the other parameters are dedicated for
obtaining auxiliary output which can be seen in the
works [25, 34, 50].

• The reason for no branch-outs in our network is be-
cause both primary and auxiliary tasks, i.e, depth re-
construction and depth contour regression, in our case
are in the same domain, i.e., depth.

2. Network architecture
SConv x-y layer takes depth feature maps and binary

mask from previous layer and transforms them by perform-
ing a set of operations, i.e., point-wise multiplication, con-
volution, max-pooling, normalization and non-linear acti-
vation (ReLU). The blocks indicated with borders are train-
able and others are just mathematical operations. Ones x is
a convolution layer where the convolution kernel contains
ones of dimension (x, x). Max Pooling x performs max
pooling operation on patches of dimension (x, x). The out-
put of Sconv x-y consists of y depth features and one binary
mask. Binary mask does not exist for the first layer, so it is
created from the input sparse depth image.

3. Directory structure and execution details
This supplementary material is provided in a zip file. We

have provided all the training scripts, validation, and data

SIUNet
code.. contains training, validation, and data augmentation scripts
model.. contains our model (L1) which achieved best performance
dataset... datasets have to be copied inside this folder as follows

kitti
train
val selection cropped....................................... this is KITTI selected validation set

synthia
train

nyu
nyudepthv2.. this is the original NYU dataset with .h5 files

train
val

converted.. this contains .npy files converted from .h5 files
train
test

Readme.pdf

Figure 1: Directory structure of supplementary materials for code execution and validation

Figure 2: Detailed network architecture of SIUNet. SConv x-y, ... : indicates that there are y sparse 2D convolution kernels
of size (x,x). A stack of such layers is indicated with ellipsis (...). Our model is a fully sparse convolutional network which
consists of 27 sparse convolution layers. Our network uses only one input: sparse depth image, and produces two outputs:
dense depth and depth contour images

augmentation script. We have provided place holders in the
form of directory structure in the format shown in Fig. 1
for the datasets that we have used, and these datasets have
to be downloaded for training or validating our scripts. We
had employed random seed generator during our training
process. To ensure reproducibility, the same random seed
can be used which is also provided in scripts. All the scripts
have been written in Python 3.8, and can be directly exe-
cuted with python command without any command line ar-
guments. Python requirement file has also been provided
in the code folder, which can be used with pip install -r re-
quirements.txt command to install all python dependencies.
For NYUv2 dataset, .h5 files are first converted to .npy files
and subsequently used for training and testing our model.
The details of epoch, optimizer parameters, training losses,
and evaluation metrics are provided in the scripts. For fine-

tuning on KITTI dataset, only the last 3 layers were trained,
and for NYUv2 dataset, the last 6 layers were trained.

4. Ablation study

Table 1 provides detailed description of different train-
ing methods, targets, and loss functions that were used for
ablation study. The trained models are large in size so we
have provided only one of them in the supplementary ma-
terials. We have provided the model which achieves state-
of-the-art performance among unguided methods on KITTI
depth completion benchmark. With this model, test 7 of
ablation study can be carried out on KITTI validation se-
lection dataset. We have provided the scripts for all the test
cases of ablation study.

Figure 3: Detailed illustration of SConv x-y layer

Table 1: Illustrates detailed description of different training targets, and training methods used for the ablation study. After
the training procedure, all the trained models were evaluated on KITTI depth completion validation selected set, with sparse
depth as the only input and semi-dense depth image as the target

Test Training method Dataset Details Training loss

1 Conventional KITTI Input: Sparse depth MAETarget: Sparse depth

2 Transfer learning (TL)
Step 1: SYNTHIA Input: Sparsified depth

MAETarget: Dense depth

Step 2: KITTI Input: Sparse depth
Target: Sparse depth

3 Auxiliary learning (AL) SYNTHIA Input: Sparsified depth MAE+ Zero-shot learning (ZSL) Target: Dense depth, Depth contour

4 Conventional KITTI Input: Sparse depth MAETarget: Semi-dense depth

5 Transfer learning (TL)
Step 1: SYNTHIA Input: Sparsified depth

MAETarget: Dense depth

Step 2: KITTI Input: Sparse depth
Target: Semi-dense depth

6
Auxiliary learning (AL) Step 1: SYNTHIA Input: Sparsified depth MAETarget: Dense depth, Depth contour
+ Transfer learning (TL): Ours L2 Step 2: KITTI Input: Sparse depth RMSETarget: Semi-dense depth

7
Auxiliary learning (AL) Step 1: SYNTHIA Input: Sparsified depth MAETarget: Dense depth, Depth contour
+ Transfer learning (TL): Ours L1 Step 2: KITTI Input: Sparse depth MAETarget: Semi-dense depth

5. Sparsity invariance and generalization

Figures 4 to 7 show illustration of sparsity invariance
of SIUNet evaluated on SYNTHIA dataset, KITTI and
NYUv2 dataset. For the sake of uniformity in defining the
induced sparsity levels, we have taken the ratio of pixels in
a raw Velodyne input depth image of KITTI and pixels in

its corresponding output dense depth image as a reference.
It can be seen that in-spite of training SIUNet on outdoor
SYNTHIA dataset (source domain) in the auxiliary step, it
generalizes well for indoor NYUv2 dataset (target domain).

Figure 4: Sample illustration of dense depth outputs for varying sparsity levels of input image (SYNTHIA dataset)

Figure 5: Sample illustration of depth contour outputs for varying sparsity levels of input image (SYNTHIA dataset)

Figure 6: Sample illustration of dense depth outputs for varying sparsity levels of input image (KITTI dataset)

Figure 7: Sample illustration of dense depth outputs for varying sparsity levels of input image (NYUv2 dataset)

(a) RGB images for reference, (b) PSM [54], (c) StoD(d) [26], (d) pNCNN [8], (e) Spade-sD [28], (f) SIUNet (Ours)

Figure 8: Detailed evaluation on the boundary areas: Qualitative comparison of our approach with SoTA unguided depth
completion approaches sorted in decreasing order of MAE from top to bottom. The closeup views of our method show
sharpness along object boundaries and structural correctness. Depth bleeding can be observed in the reconstructions of other
methods. Our network produces small errors along boundaries compared to SoTA unguided method (e). Small errors are
displayed in blue and large errors in red. Black regions indicate missing ground truth.

