1. Additional Results

Ablation on \tilde{L}_{dist}. We distill VideoMAE [1] (a transformers-based offline action recognition model) to our teacher model on SSv2 dataset. To do so, we minimize \tilde{L}_{dist}, i.e., KL-divergence between the class distributions predicted by our teacher model and VideoMAE based on complete video (equation 6 in main paper). To assess importance of this objective, we train our teacher model with and without \tilde{L}_{dist} and display results in Figure 1(a). We observe improvement of approximately 6% in accuracy at $t = 16$ when \tilde{L}_{dist} is included in the training objectives. Note, since a pretrained VideoMAE [1] in unavailable for Jester, we do not use \tilde{L}_{dist} for training the teacher model on this dataset.

Ablation on Initialization Scheme. To improve the performance of the teacher model on the Jester dataset, we initialize its parameters using the parameters of the teacher model pretrained on SSv2 with a complete set of training objectives (equation 9 in the main paper), including \tilde{L}_{dist}. We compare the performance of the above model with the performance of the teacher initialized using default scheme i.e. T_f initialized using an open-source ViT-S model [2] pretrained on the ImageNet, and T_c and T_l initialized randomly. The result shown in Figure 1(b) indicates that once finetuned on Jester dataset, the teacher pretrained on SSv2 achieves higher performance than the teacher initialized with default scheme, especially for $t > 4$. Finally, at $t = 8$, the teacher with pretrained weights achieves nearly 1.5% higher accuracy.

Visualization. We show more visual results on example videos from SSv2 in Figure 2.

References

Figure 2: Visualization of glimpses (bottom rows) selected by GliTr on SSv2 dataset. Complete frames (top rows) are shown for reference.