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In the main submission file, we first propose a message-passing prior model to learn interactions among data components.
The prior is then extended to a bi-level decomposable variational auto-encoders (VAEs) that can learn disentangled latent
structural representations from input data. The auto-encoder for the second level or layer is parameterized with an aggre-
gation model to perform relational inference. It also serves as the structural prior for the first layer’s global latent variable
distribution.

In this paper, message passing denotes the encoding-decoding procedure through flows as shown in Figure 1, and it is
used to aggregate hierarchical information and to compute the KL terms in the ELBO. Moreover, the proposed prior is
significantly different from the sequential prior (LSTM) in Genesis [8]. As illustrated in Section 4.1 and Figure 10, the
proposed aggregation prior overcomes the drawbacks of sequential dependency in Genesis through message passing and the
local-global latent variable decomposition.

According to our theoretical analysis (Section 3.3), the disentangling representation in our model relies on the segmen-
tation of different components to provide implicit supervision. The theory in Section 3.3 extends the results in nonlinear
ICA [24, 21], and our results show that as long as some components can be constantly segmented by the model, the latent
variables can be identified through the aggregation prior.

This supplementary file provides additional empirical results, theoretical proofs and details of the implementation.

A. Additional Experimental Results and Analysis

This section provides additional experimental results. All the experiments are conducted on NVIDIA Tesla V100S-PCI
and TITAN X (Pascal) GPUs.

A.1. Additional Results on Tetrominoes Dataset

Methods ARI " MSC "

MONet 0.552 0.606
MPPM (Ours) 0.587 0.726

Table 5. Segmentation results for different methods on Tetrominoes Dataset.

Table 5 gives the segmentation results for different methods on the testing set of Tetrominoes dataset. In addition to ARI
score, we also include Mean Segmentation Covering (MSC) [12, 8] in the results, and both ARI and MSC are computed
based on foreground components. According to Table 5, three methods achieve close ARI scores. Moreover, our method
MPPM achieves improved results for both metrics compared against MONet and Genesis. The proposed message passing
prior helps the model to identify different components or objects in the dataset.

A.2. Visualization on CelebA Dataset
To further understand how our model can capture each data component, we conduct a visual analysis on CelebA Dataset.

We randomly sample 8 images and show their reconstruction and segmentation results using our proposed method MPPG in
Figure 8-left and Genesis in Figure 8-right. We observe that both results show that the segmentation heavily relies on object
colors and the components can provide some semantic information about the images. Nevertheless, we show the advantages
of MPPG under generative mode in Figure 9, where we plot the generated images from the decoders of both models. The
images in the figures visually show that MPPG can generate better images and components. For example, the component
k = 1 better captures facial characteristics and the component k = 5 focuses more on hair styles.

We admit that our model only marginally improves the visualization results on natural images. However, the joint task
of object segmentation and representation learning from multiple-object natural images through an unsupervised approach
is still challenging. The additional priors and constraints for object segmentation could limit the model’s power on image
reconstruction and generation even in comparison with vanilla generative models. We hope the proposed message passing
prior could provide some inspiration in this direction.



Figure 8. Input images, the reconstructions, and components from MPPG (left) and Genesis (right). The top row is the original input
images from the testing dataset, and the second row gives the reconstruction images from both methods. k is the index of component k in
the lower rows. Best viewed in color.

Figure 9. Randomly generated samples and components from MPPG (left) and Genesis (right). Latent variables are randomly sampled and
then the corresponding images are generated from both models respectively.



B. Evidence Lower Bound (ELBO) of Bi-Level Latent Model
To derive the ELBO in Eq. (5), we start from a bi-level variational auto-encoder (VAE) with simplified notations, and

then we extend the derivation to proposed models. We use h
l, l 2 {1, 2} to represent the latent variable in layer l. Let
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The first term is data reconstruction. We can extend the second term as follows.
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In the second term in the above equation, the posterior can be factorized as
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where H(.) is the entropy function. Thus, the ELBO can be written as
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Due to the hierarchical bi-level structure, sampling the posterior distribution requires to follow the conditional order of
variables, i.e., q(h1

|x) first then q(h2
|h

1). Similar for the prior, p(h2) first, then p(h1
|h

2). Evaluation of the ELBO requires
level-wise samples from the posterior, and the prior. We simplify the expression of ELBO (9) by omitting the sampling
orders,
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For the bi-level model discussed in section 4, we have level 1 latent variable h1 = {z
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It is the KL divergence between the posterior of zg , q(zg|x), and its prior distribution p(zg|z0).

C. Message Passing Prior for Genesis

xk the kth component
bxk reconstruction of the kth component with decoder d
z
c
k local latent variable for the kth component

fk flow function for the kth component
z
g
k global latent variable for the kth component
bzgk reconstruction of zgk with flow function fk

z
0 global latent variable

mk mask for the kth component with attention network a

bmk reconstruction of mask k with decoder d
sk scope or attention net input for the kth component
a attention network
e encoder network
d decoder network
r recurrent network for latent variables of masks
f f = {f1, f2, ..., fK}, second level encoder

f
�1

f
�1 = {f

�1
1 , f

�1
2 , ..., f

�1
K }, second level decoder

Table 6. Notations for MPPG and MPPM .

We list the notations of MPPG in Table 6. The neural network structure of MPPG is given by Figure 3. Figure 10 gives
the graphical illustration of the generative procedure of the variables for both MPPG and Genesis [8].

The posterior qr(zm|x) is modeled with a RNN (blue blocks in Figure 3), r. The posteriors of zc and z
g , qe(zc|zm,x) and

qe(zg|zm,x), are parameterized with the encoder e network. As shown in the figure, both of them also dependents on z
m.

For the bi-level auto-encoder, (x,mk) is the first layer’s input, and (zck, z
g
k) is the first layer’s latent variable. Meanwhile, zgk

is also the second layer’s input, and z
0 is the second layer’s latent variable. bxk and bzgk are the reconstructions regarding the

first level and second level inputs, respectively.
As shown in the graphical representation of MPPG and Genesis (Figure 3), with z

0 MPPG can aggregate the information
from all components simultaneously. Genesis captures the sequential dependence among the components by leveraging the



Figure 10. Graphical representation of variables for MPPG (left) and Genesis (right).

latent variable of masks (zms). The message passing prior network structure of MPPG is given by Figure 2-Left. The second
level auto-encoder is parameterized with the proposed message passing prior model f = {f1, f2, ..., fK}, i.e.,

pf�1(zg|z0) = ⇧
K
k=1pf�1

k
(zgk|z

0),

and the posterior of z0, qf (z0|zg), is the encoding process of the model f .

D. Message Passing Prior for MONet

Figure 11. MONet with message passing prior. a is the attention network, e is the encoder, d is the decoder, and fk is the flow inference
network for component k. (x,mk) and (zck, z

g
k) are the kth component encoder’s input and output; (zck,bzgk) and (bxk, bmk) are the input

and output of the decoder. The input scope for kth component is defined by sk = sk�1 � (1�mk�1).

The neural network structure of MPPM is given by Figure 11, and the corresponding graphical model is shown in Fig-
ure 12. The notations of MPPM is listed in Table 6 as well. As shown in the Figure 11, for the bi-level auto-encoder, (x,mk)
is the first layer’s input, and (zck, z

g
k) is the first layer’s latent variable. Meanwhile, zgk is also the second layer’s input, and z

0

is the second layer’s latent variable. (bx, bmk) and bzgk are the reconstructions regarding the first level and second level inputs,
respectively. The second layer posterior distribution for z0 is qf (z0|zg1z

g
2...z

g
k). As can be seen from Figure 3, the attention

network generates mask mk for component k. The input for the encoder e is (xk,mk), and the corresponding reconstruction
generated from the decoder d is (bxk, bmk). zkzgk is the overall latent variable for component k.



Figure 12. Graphical representation of variables in MPPM . For component k, the corresponding latent variable is zckz
g
k. z0 is the shared

latent variable of K components. The pixel-wise data value and masks are denoted as x and m̄, respectively. D is the dimensionality of
the input data samples.

Different from Genesis and MPPG, MONet employs an UNet [34] as the attention network a for component segmenta-
tion [2]. Let Lk(x,mk; a, e, d, f) be the ELBO regarding component k in the bi-level MPPM . By omitting the latent variable
for masks, and taking masks as part of the reconstruction of the decoder, equation (5) becomes
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Here qe is the posterior distribution for the first layer latent variable parameterized by the encoder e. pd is the distribution
for x and mk parameterized with the decoder d. fk is the k’s flow-based model, and f = {f1, ..., fK}. The conditional
distribution qf (z0|z

g
k) captures the relationship between z

g
k and the other zgj s, j 6= k. All the latent variables are assumed to

follow Gaussian distribution. The variance value of posterior qf (z0|zg1z
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x is weighted by the attention masks (mks). The entries of the masks (mks) follow Bernoulli distribution parameterized
with Sigmoid functions. The reconstruction loss regarding the masks (the second term in �k (12)) is tractable based on this
assumption we can use the KL divergence between two neural network (a and d) outputs. The reconstruction term for both
x and mk is rewritten as
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The regularization terms for the first layer’s latent variable are
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All the latent variables are assumed to follow Gaussian distributions. Both the KL and entropy terms are easy to compute
with the reparameterization trick used in VAEs [26]. The objective across all components we need to maximize is given by
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We can see that the computation of Lfk ’s values involves both encoding (qf (z0|zgk)) and decoding (pfk(z
g
k|z

0)) procedures.
The first term of Lfk is to compute the conditional log-likelihood value of zgk given z

0. The learning of all fk is the same
as the learning of the encoder and decoder discussed in the message prior section. The prior p(z0) can be standard normal
distributions. Ideally, we hope the global latent variable’s value can be inferred from any subset of components. That is
z
0 = f(bz0) = fk(z

g
k) = fj(z

g
j ), 8k 6= j.

E. Recovery of Relations
In this section, we provide theoretical results and proofs regarding the proposed message passing prior.

E.1. Properties of Message Passing Prior
Given a data sample y = [y1,y2, ...,yK ], we have the following lemma regarding the likelihood value computed with the

message passing scheme in Figure 1.

Lemma 1. The log-density value of y can be approximated by
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Proof. The structure relation between h and y = [y1,y2, ...,yK ] is given in Figure 1, thus the Jacobian matrix regarding the
functions mapping from h to the reconstruction by = [by1, ..., byK ] = [f�1

1 (h1), ..., f
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K (hK)] is defined in Jby(h). With the

training objective (1) and (2), we can have by ⇡ y, and bhk ⇡ hk. The change of variable theorem is known in the context of
geometric measure theory as the smooth coarea formula [37, 27, 16], that is
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from which we obtain the log-likelihood for y.

We use coupling layers [6] to implement flow functions. According to the theoretical study of [35], coupling layer flows
are universal approximators. Feed forward ReLU networks are implemented for the scale and shift function of coupling
layers. In this section, we extend the theoretical result of feed forward neural networks [10] to relation recovery. In this
paper, ⇣ means in the same asymptotic order.
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Proof. The ELBO for the message passing prior model is
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Maximizing the ELBO is equivalent to the following optimization problem,

min
f

Lf = Ey⇠P (y)

 KX

k=1

�����yk � f
�1
k (h)

����2
2
+
����h� fk(yk)

����2
2

 
+ KL

�
qf (h|y)||p(h)

��

s.t.
1

K

KX

k=1

fk(yk) = h

Inside the expectation, the objective has two parts,

F(y) =
KX

k=1

�����yk � f
�1
k (h)

����2
2
+
����h� fk(yk)

����2
2

 
+ KL

�
qf (h|y)||p(h)

�
(16)

=F�u(y) + Tu(y)

The first part, F�u(y), can be taken as to minimize the distance between fu(yu) and other fj(yj)s (j 6= u),

F�u(y) =
X

j:1jK,j 6=u

�����yj � f
�1
j (h)

����2
2
+
����h� fj(yj)

����2
2

 
+
����h� fu(yu)

����2
2

+ KL
�
qf (h|y)||p(h)

�
.

We assume the flow functions used in the models are L-Lipschitz continuous,
����h� fj(yj)

����
2
=
����fj(yj)� fj(f

�1
j (h))

����
2
 L

����yj � f
�1
j (h)

����
2
.

Therefore, the lower bound of F�u(y) reads,

F�u(y) �(
1

L2
+ 1)

X

j:1jK,j 6=u

����h� fj(yj)
����2
2
+
����h� fu(yu)

����2
2

(17)

+ KL
�
qf (h|y)||p(h)

�

In RHS of (17),

����h� fu(yu)
����2
2
=

(K � 1)2

K2

����

����
1

K � 1

X

j:1jK,j 6=u

fj(yj)� fu(yu)

����

����
2

2

. (18)

Thus the squared terms in RHS of lower bound (17) indicate minimizing F�u(y) is to minimize the mutual distances of
different fj(yj)s, the KL is to force the summation to be close to a Gaussian distribution. With the assumption that the total
number of different relations is smaller than the flow dimension(|R|  dim(h)), then there will be enough capacity for the
feed forward neural network to ensure the distance between any pair of fj(yj)s smaller than a very small value under high
probability [10]. With a very large n, 18 will become a very small number, i.e.,
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Let ith entry of yu be a function of some of entries in yj , j 6= u, i.e., g⇤u,i. According to Theorem 1 of [10], let all

the ReLU feed forward functions in f have width W ⇣ n
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E.2. Identifiability of Latent Representation
Following [24, 15], we define following equivalence relations on ⇥.

Definition 1. Let ⇠ be the equivalence relation on ⇥. We say (4) is identifiable up to ⇠ if
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k , ...,u
(lm)
k be from

conditions (b) and (c). We can subtract this expression for u(0)
k for some condition u

(t)
k . The Jacobian terms will be removed

since they do not depend uk,

log phk(hk|u
(t)
k )� log phk(hk|u

(0)
k ) = log ph0

k
(h0

k|u
(t)
k )� log ph0

k
(h0

k|u
(0)
k ). (21)

Both conditional distributions of hk given uk belong to exponential family. Eq. (21) can be rewritten as
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k )
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k )

+
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=
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+
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�b�i,j(u

(t)
k )� b�i,j(u

(0)
k )

��
. (22)



Here the base measures Qi is cancelled out as they do not depend on uk. Let �̄(uk) = �(uk)��(u(0)
k ). The above equation

can be rewritten with inner products as

hT(hk), �̄i+
X

i

log
Zi(u

(0)
k )

Zi(u
(t)
k )

= hbT(h0
k), b̄�i+

X

i

log
bZi(u

(0)
k )

bZi(u
(t)
k )

, 8l, 1  l  lm.

Combine lm equations together and we can rewrite in matrix equation form as following

L
>
T(hk) = bL> bT(h0

k) + b.

Here bt =
P

i log
bZi(u

(0)
k )Zi(u

(t)
k )

bZi(u
(t)
k )Zi(u

(0)
k )

. We can multiply L
>’s inverse with both sized of the equation,

T(hk) = AbT(h0
k) + c. (23)

Here A = L
�1>bL>, and c = L

�1>
b. By a lemma from [24], there exist m distinct values h

1
k,i to h

m
k,i such that⇥

dTi
dhk,i

(h1
k,i), ...,

dTi
dhk,i

(hm
k,i)

⇤
are linear independent in Rm, for all 1  i  l. Define m vectors h

t
k = [ht

k,1, ..., h
t
k,l]

from points given by this lemma. We obtain the Jacobian Q = [JT(h1
k), ...,JT(hm

k )] with each entry as Jacobian with size
lm⇥ l from the derivative of Eq. (23) regarding these m vectors. Hence Q is a lm⇥ lm invertible by the lemma and the fact
that each component of T is univariate. We can construct a corresponding matrix bQ with the Jabocian bT(g�1

� f
�1
k (hk))

computed at the same points and get

Q = AbQ.

Here bQ and A are both full rank as Q is full rank.

F. Network Structures

The encoder, decoder, and attention network of MPPG follow the implementation of Genesis. Flow functions used in the
message passing prior for both models employ coupling layers [6], and the scale and shift function is presented in Table 7.

The network structures for the encoder and decoder of MPPM are given in Table 8 and Table 9, respectively. The attention
network of MPPM employs one U-net [34] with 5 blocks. The decoder is a spatial broadcast decoder [40] to encourage the
VAE to learn spatial features. Each flow function fk consists of a sequence of three coupling layers. Let x and y be the input
and output of a coupling layer, the scale s(·) and shift function t(·) is define by

y1: d2
= x1: d2

y d
2+1:d = x d

2+1:d � s(x1: d2
) + t(x1: d2

).

As shown in Table 7, there is no activation function for the t part in the last layer, but s has Sigmoid as the activation function
in the last layer.

Scale and shift function
Layer Number of Batch Activation

Output Normalization function
Input z d/2 - -
Fully-Connected 64 N ReLU
Fully-Connected 64 N ReLU
Fully-Connected d Y s: Sigmoid; t: -

Table 7. Scale and shift function of coupling layer



MPPM Encoder (e)
Layer Number of Kernel Stride Activation

Output function
Input x 4*64*64 - - -
Convolution 32*32*32 3*3 2 ReLU
Convolution 32*16*16 3*3 2 ReLU
Convolution 64*8*8 3*3 2 ReLU
Convolution 64*4*4 3*3 2 ReLU
Fully- 2⇥ zdim - - -
Connected

Table 8. Network structure of MPPM encoder. zdim is the length of zk plus the length of z0.

MPPM Decoder (d)
Layer Number of Kernel Stride Activation

Output function
Input [zk, z0(k)] (zdim+2) - - -

*72*72
Convolution 32*70*70 3*3 1 ReLU
Convolution 32*68*68 3*3 1 ReLU
Convolution 32*66*66 3*3 1 ReLU
Convolution 32*64*64 3*3 1 ReLU
Convolution 4*64*64 1*1 1 ReLU

Table 9. Network structure of MPPM decoder


