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1. HDR evaluation on NTIRE 2022 dataset

The NTIRE 2022 HDR dataset [8] consists of approxi-
mately 1,500 training, 60 validation and 201 testing exam-
ples in RGB domain. Each example in the training set is
composed of three input LDR images, i.e. short, medium
and long exposures, and a related ground-truth HDR im-
age aligned with the central medium frame. Input images
are obtained using a pixel-measurement model, which in-
cludes several sources of noise. Since this dataset doesn’t
release the ground-truth of its original validation and testing
set, we divide its training set into two subsets, and use them
for training and testing respectively. 1,200 images are ran-
domly selected as the training set, and the remaining 300
images are used as the testing set. In consideration of the
workload, we randomly select 50 images from the testing
set for MOS score evaluation.

As given in Table 1, it can be seen that our method
outperforms the prior arts with PSNR/SSIM/MOS at 0.18
dB/0.007/0.11. Fig. 1 indicates that our EMVNet is able to
produce HDR output with better perceptual quality.

2. Real-world E2E-ISP

In this section, we give more details of the evaluation on
real-world E2E-ISP task. E2E-ISP is more complicated
than HDR since it is a hybrid problem which composes of
various tasks such as multi-image fusion (HDR), domain
transfer (demosaicing), and color tuning (auto white bal-
ancing). Similar to raw HDR, the inputs to the E2E-ISP net-
works are 10-bit raw images, while the output is 3-channel
RGB image. As given in Fig. 2, in scenarios with different
lighting conditions and exposure variations, our EMVNet
is able to produce RGB images with more neural color,
and w/o any motion ghost (in contrast to prior arts’ results
as given in Fig. 2(d)(e)). Since the real-world cellphone
adopts dol sensor to capture the raw LDR images, the time
gap between the two captures will be less than 100ms. As
a result, there will not be much scenario with motion differ-
ences as large as Kalantari‘s dataset [3].

Table 1. Experimental results on the NTIRE 2022 HDR dataset
[8]. Bold font indicates the best over the columns. All networks
are trained on the same dataset. For MOS, the lower the better.

Method PSNRµ SSIMµ MOS
Kalantari et al. [3] 35.24 0.9544 -

Yan et al. [10] 35.79 0.9601 1.99
Niu et al. [7] 36.13 0.9622 2.01
Liu et al. [6] 36.26 0.9627 1.96
Our EMVNet 36.44 0.9691 1.85

Our training RGB ground-truth images are HDR+ im-
ages processed by the ISP of Google phones, and the testing
raw images are captured by OPPO phones with a different
sensor (Sony IMM766). Such mismatch might influence
the accuracy. To solve this problem, we create a small tun-
ing dataset with 16 RWMR raw images as input, process
them by our EMVNet, and manually tune the color tone
by Photoshop to make the output image have better percep-
tual quality. We further fine-tune our EMVNet on this 16
manually tuned images for 100 epochs. From Fig. 3, we
notice that the color is further enhanced after fine-tuning.
That means with human label, we are able to handle the
mismatch between different sensors.

3. Ablation studies
3.1. Usage of weakly-supervised loss function

In Fig. 4, we give the illustrations of applying our weakly-
supervised loss functions for E2E-ISP task (in raw HDR
task the visualization difference is not that significant due
to lacking appropriate AWB and demosaicing modules).
We observe that with the usage of weakly-supervised loss
function, we receive more reliable color in the output RGB
images. w/o the usage of weakly-supervised loss, the blue
lights and orange bars turn into purple and yellow in the top
image, and the yellow light in the bottom image becomes
yellow-green. Since the E2E-ISP is more complicated than
HDR, keeping the color consistency will be more important.
Our proposed weakly-supervised loss function is useful to
deal with this issue.

Our proposed weakly-supervised loss function can be

1
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Figure 1. Comparisons of our EMVNet and state-of-the-art HDR methods on NTIRE 2022 images.

Table 2. Comparison to the state-of-the-art methods on the valida-
tion images of HDR+ dataset. For raw HDR, we calculate the
PSNR/SSIM in the linear raw domain using the merged bursts
as the ground-truth. For E2E-ISP, we calculate the PSNR/SSIM
in the RGB domain using the ISP processed JPEG images as the
ground-truth. Bold font indicates the best over the columns. All
the approaches are trained on the same training set.

Raw HDR E2E-ISP
Method PSNR SSIM PSNR SSIM
ADNet 36.351 0.9670 - -

ADNet + our loss 36.513 0.9730 - -
PyNet-CA - - 35.349 0.9479

PyNet-CA + our loss - - 35.669 0.9533
Ours EMVNet 37.377 0.9824 36.891 0.9612

applied as an additional component to any of image en-
hancement networks. In Table 2, we use the state-of-the-art
HDR method ADNet [6] and E2E-ISP method PyNet-CA
[4] as baseline, retrain their official code with additional
weakly-supervised loss proposed in this paper. It can be
seen that the accuracy of the baseline methods is signifi-
cantly improved. This demonstrates the effectiveness of the
proposed weakly-supervised loss function. We also notice
that the accuracy of prior arts with weakly-supervised learn-
ing are still lower than our EMVNet, because the matching
volume is another key component which contributes to our
considerable performance.

3.2. hyper-parameter tuning

We evaluate the accuracy of EMVNet trained with differ-
ent hyper-parameters in the loss functions. As mentioned in
Section 4 of our paper, the generator loss LG consists of the
image content loss Lc, the perceptual loss Lp, the adversar-
ial loss La, and the weakly-supervised loss Ls, as described
in Eq. 1. λ, η, α determine the contribution of adversarial
loss, content loss, and the weakly-supervised loss.

LG = Lp + λLa + ηLc + αLs, (1)

Since the content loss consists of three terms due to the
two intermediate outputs Y ′′, Y ′ from stacked hourglass,
there will be two additional hyper-parameters here, given
as the β1, β2 in Eq. 2.

Lc = L1(Y, Y
∗)+β2∗L1(Y

′′, Y ∗)+β1∗L1(Y
′, Y ∗) (2)

The weakly-supervised loss functions Ls also have two
thresholds Spix, Spat for the pixel version Ls,pix and the
patch version Ls,pat respectively, as given in Eq. 2 and Eq.
3 in Section 4.1 of our paper. As a result, there are 3 +
2 + 2 = 7 hyper-parameters in total. In our paper, we pre-
set β1 = 0.75, β2 = 0.5, Spix = 0.25, Spat = 0.5. In
this section, we train EMVNet with different combinations
of all these 7 hyper-parameters on HDR+ images for raw
HDR to check the network robustness.

3.2.1 Different weights of the loss functions

First we fix λ = 0.001, α = 0.25, η = 0.001, Spix =
0.25, Spat = 0.5, and evaluate different values of β1, β2 to
see whether adding constraint on the intermediate outputs
of the stacked hourglass will be helpful. Since the inter-
mediate outputs Y ′′, Y ′ are only used during the training,
β1, β2 should be set to some values smaller than 1. Y ′′

is the output of the first hourglass, and Y ′ is the output
of the second hourglass, so empirically we set β2 ≤ β1.
From the results given in Table 3, it can be seen that the
accuracy doesn’t change much along with different combi-
nations of β1, β2. But if set both of them to 0 (row 2), which
means that the intermediate outputs are not utilized during
the training, the PSNR will decrease 0.08 dB. In contrast,

2



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

WACV
#0259

WACV
#0259

WACV 2023 Submission #0259. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 2. More comparisons of our EMVNet and state-of-the-art E2E-ISP methods on real-world raw images. (a)(b) have large exposure
differences. (c)(d)(e) have significant motion between long/short-exposure images, see the person head at bottom left of (c), the person leg
in (d), and the school bus in (e). (c)(d)(f) are captured in extreme low-light scenarios. Our EVMNet produces better results consistently.
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Figure 3. Fine-tuning with manually labeled ground-truth with same sensor as the testing images can further improve the output image
quality.

Figure 4. Expample output of EMVNets with and w/o weakly-supervised loss functions.

if we increase β1, β2 to 1 (row 7), which means that the in-
termediate outputs have equal weights as the final output,
the accuracy will also decrease 0.05 dB. In our final imple-
mentation, we select the one with the highest PSNR/SSIM
combination, which is β1 = 0.75, β2 = 0.5 as given in row
6 of Table 3.

In Table 4, we give EMVNet trained with different com-

binations of λ, α, η to evaluate the robustness when giv-
ing different weights for content loss, GAN learning, and
weakly supervised loss. During the evaluation, other hyper-
parameters are fixed as β1 = 0.75, β2 = 0.5, Spix =
0.25, Spat = 0.5.

First, we notice that using different values of λ (row 2-
4) will not lead to significant difference on the accuracy
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Table 3. Raw HDR accuracy evaluation on HDR+ validation im-
ages with different hyper-parameters of loss functions. λ =
0.001, α = 0.25, η = 0.001, Spix = 0.25, Spat = 0.5 are fixed
for all rows.

β1 β2 PSNR SSIM
EMVNet 0 0 37.299 0.9802
EMVNet 0 0.25 37.331 0.9816
EMVNet 0.25 0.5 37.343 0.9819
EMVNet 0.5 0.5 37.346 0.9827
EMVNet 0.5 0.75 37.377 0.9824
EMVNet 1 1 37.326 0.9816

Table 4. Raw HDR accuracy evaluation on HDR+ validation im-
ages with different hyper-parameters of loss functions. β1 =
0.75, β2 = 0.5, Spix = 0.25, Spat = 0.5 are fixed for all rows.

λ α η PSNR SSIM
EMVNet 0.001 0.25 0.001 37.377 0.9824
EMVNet 0.01 0.25 0.001 37.333 0.9811
EMVNet 0.1 0.25 0.001 37.360 0.9817
EMVNet 0.001 0.1 0.001 37.322 0.9799
EMVNet 0.001 0.5 0.001 37.346 0.9821
EMVNet 0.001 1 0.001 37.272 0.9780
EMVNet 0.001 0.25 0.005 37.379 0.9820
EMVNet 0.001 0.25 0.01 37.391 0.9798
EMVNet 0.001 0.25 0.1 37.427 0.9762

(< 0.05 dB). This observation is consistent to [9], where
adversarial loss has less impact on the image enhancement
accuracy as well. Second, by using different α for weakly-
supervised loss Ls., the accuracy varies. The PSNR drops
0.1 dB when setting α = 1 (row 7). This tells us that over-
emphasizing the pair-wise constraint will also decrease the
performance. In Table 4 of our paper, we already show that
ignoring the weakly-supervised loss function (α = 0) will
decrease the PSNR 0.2-0.3 dB. But if we have this loss, us-
ing different weights in an appropriate range (row 5-7) will
not lead to significant accuracy change (< 0.1 dB). Third,
we observe that increasing η will lead to better PSNR (row
8-10), but with a cost of SSIM reduction. Since η is the
weight of L1 loss, if we emphasize it too much, the net-
work might overfit on the training images and receive lower
perceptual quality in the unseen scenarios. So finally we
choose the group of λ = 0.001, α = 0.25, η = 0.001 given
in row 2 of Table 4.

3.2.2 Different thresholds in the weakly-supervised
losses

Next, we evaluate different thresholds Spix and Spat in the
weakly supervised loss function. We train EMVNet with
the usage of Ls,pix and Ls,pat respectively to find the best
Spix and Spat. The weights of the loss functions are fixed
as λ = 0.001, α = 0.25, η = 0.001, β1 = 0.75, β2 = 0.5.
From Table 5, we find that the by setting different thresholds
for the weakly-supervised loss functions, the PSNR/SSIM
don’t change much, within a range about 0.08 dB/0.003. We
also notice that the EMVNets trained with the patch-version
loss have better accuracy than the pixel-version. This makes
sense because the patch-version loss is more robust to noise.

Table 5. Raw HDR accuracy evaluation on HDR+ validation im-
ages with different thresholds of weakly-supervised losses.

Spix Spat PSNR SSIM
EMVNet 0.1 - 37.126 0.9800
EMVNet 0.25 - 37.161 0.9798
EMVNet 0.5 - 37.111 0.9781
EMVNet 1 - 37.130 0.9774
EMVNet - 0.1 37.192 0.9766
EMVNet - 0.25 37.173 0.9782
EMVNet - 0.5 37.276 0.9789
EMVNet - 1 37.211 0.9793

Table 6. Raw HDR accuracy comparison on the validation images
of HDR+ dataset. All the approaches are trained on the same train-
ing set.

Method Number of inputs PSNR/SSIM
Liu et al. [5] 1 35.32/0.9538

Chen et al. [2] 1 35.79/0.9512
EMVNet 2 37.38/0.9824
EMVNet 3 37.55/0.9835

In our final implementation, we select the ones with the best
PSNR/SSIM, as Spix = 0.25, Spat = 0.5 (row 3, row 8).

3.3. Different number of input images

Since the EMVNet is not limited to the number of the
input images, we did an ablation study on the accuracy
versus the number of input images. We use the raw-
HDR task and HDR+ dataset for this purpose. Besides
the two-input EMVNet shown in our paper, we train an-
other EMVNet with 3 input images, while the exposure
biases are {−a, 0, a}, a ∈ {2, 4, 8, 16}. We also com-
pare the state-of-the-art single-input HDR methods [5][2],
which is re-trained by their official code on the same HDR+
datasets with single LDR image as input. In Table 6. it can
be seen that the multi-inputs HDR methods demonstrate a
large margin compared to single-input HDR methods [5][2]
(row 4-5 vs. row 2-3). The major reason is that most of the
current single image HDR methods are evaluated on images
captured by DSLR cameras, which has less sensor noise and
limited scenarios. For cellphone images which are captured
in extreme lighting conditions like night scenes, the single-
image HDR methods don’t work well. If we use three in-
put images, the accuracy can be further enhanced around
0.17 dB (row 5 vs. row 4). This accuracy improvement in
not significant because the more input images we use, the
more difficulty we will have during the motion and expo-
sure alignment. In addition, in consideration of the power
consumption, capturing three images is not very practical in
cellphone in contrast to current two-image version of Dol
sensor.

3.4. Efficient version EMVNet-lite

As mentioned in section 5.4.3 of our paper, we create an
simplified version of our EMVNet in consideration of the
efficiency, called EMVNet-lite. We replace the standard
convolutional layers by depthwise convolutional layers in
the feature extraction module. All the convolutional layers
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Table 7. PSNR/SSIM/runtime of the simplified EMVNets com-
pared to original version on HDR+ dataset. The runtime (second)
is calculated on single A100 GPU with 4K resolution images (12M
pixels) .

Raw HDR E2E-ISP
Method PSNR SSIM runtime PSNR SSIM runtime

EMVNet-lite 37.111 0.9781 0.052 36.651 0.9557 0.081
EMVNet-lite-os 36.899 0.9712 0.052 36.365 0.9506 0.081

EMVNet 37.377 0.9824 1.513 36.891 0.9612 2.892

(including those in the stacked hourglass) are trimmed to
half. We further add a pixel unshuffling layer at the begin-
ning to downsample the feature map x2, and a pixel shuf-
fling layer just before the output layer to upsample the fea-
ture map x2. The number of RRDB in the feature extraction
is reduced to 6 for both HDR and E2E-ISP.

We fine-tune the network with the usage of knowledge
distillation of GAN learning [1]. We follow a step-to-
step way during the fine-tuning. Starting from the original
EMVNet:

• Step 1: Reduce the number of RRDB and the num-
ber of filters in the feature extraction, but keep other
parts of EMVNet unchanged and inherit the weights
from the original MVNet, fine-tune the network w/o
any weights frozen.

• Step 2: Replace the standard convolutional layers by
depthwise convolutional layers in the feature extrac-
tion of the output model of Step 1, but keep other parts
unchanged and inherit the weights, fine-tune the net-
work w/o any weights frozen.

• Step 3: Trim the convolutional layers in the aggrega-
tion part of the output model of Step 2, but keep other
parts unchanged and inherit the weights, fine-tune the
network w/o any weights frozen.

• Step 4: Add the pixel-unshuffling layer and pixel-
shuffling layer at the output model of Step 3, fine-tune
the whole network to get the final EMVNet-lite model.

This accelerates the network x30 compared to original
EMVNet, with a 0.26 dB/0.005 PSNR/SSIM drop in to-
tal (row 3 vs. row 5), as given in Table 7. If we
don’t follow the above step-to-step fine-tuning, but di-
rectly do an one-shot training from scratch, the accu-
racy of the resulting EMVNet-lite model will decrease
0.47 dB/0.011 PSNR/SSIM compared to original EMVNet,
given as EMVNet-lite-os in Table 7 (row 4). The quality
reduction of the output images of the EMVNet-lite is not
very significant in human vision, as shown in Fig. 5. With
further network quantization and revision based on NPU’s
requirement, the EMVNet-lite has potential to fit on current
cellphone.

References
[1] Angeline Aguinaldo, Ping-Yeh Chiang, Alex Gain, Ameya

Patil, Kolten Pearson, and Soheil Feizi. Compress-
ing gans using knowledge distillation. arXiv preprint
arXiv:1902.00159, 2019.

[2] Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao,
and Chao Dong. Hdrunet: Single image hdr reconstruc-
tion with denoising and dequantization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 354–363, 2021.

[3] Nima Khademi Kalantari, Ravi Ramamoorthi, et al. Deep
high dynamic range imaging of dynamic scenes. ACM Trans.
Graph., 36(4):144–1, 2017.

[4] Byung-Hoon Kim, Joonyoung Song, Jong Chul Ye, and Jae-
Hyun Baek. Pynet-ca: enhanced pynet with channel at-
tention for end-to-end mobile image signal processing. In
ECCV. Springer, 2020.

[5] Yu-Lun Liu, Wei-Sheng Lai, Yu-Sheng Chen, Yi-Lung Kao,
Ming-Hsuan Yang, Yung-Yu Chuang, and Jia-Bin Huang.
Single-image hdr reconstruction by learning to reverse the
camera pipeline. In CVPR, 2020.

[6] Zhen Liu, Wenjie Lin, Xinpeng Li, Qing Rao, Ting Jiang,
Mingyan Han, Haoqiang Fan, Jian Sun, and Shuaicheng Liu.
Adnet: Attention-guided deformable convolutional network
for high dynamic range imaging. In CVPR, 2021.

[7] Yuzhen Niu, Jianbin Wu, Wenxi Liu, Wenzhong Guo, and
Rynson WH Lau. Hdr-gan: Hdr image reconstruction from
multi-exposed ldr images with large motions. IEEE Trans-
actions on Image Processing, 30:3885–3896, 2021.
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Figure 5. The difference between the EMVNet-lite and standard EMVNet is not very significant in human vision.

7


