
Supplementary Material to

Gradient-Based Quantification of
Epistemic Uncertainty for Deep

Object Detectors

A. Object Detection

A.1. Notation.

We regard the task of 2D bounding box detection on
camera images. Here, the detection

ŷ(x,w) = (ŷ1(x,w), . . . , ŷNx(x,w)) ∈ RNx×(4+1+C)

(7)
on an input image x, depending on model weights w, con-
sists of a number Nx ∈ N (dependent on the input x) of
instances ŷj . We give a short account of its constituents.
Each instance

ŷj = (ξ̂j , ŝj , p̂j) ∈ R4+1+C (8)

consists of localizations ξ̂j = (x̂j , ŷj , ŵj , ĥj) encoded e.g.
as center coordinates x̂, ŷ together with width ŵ and height
ĥ. Moreover, a list of Nx integers κ̂ ∈ {1, . . . , C} rep-
resents the predicted categories for the object found in the
respective boxes out of a pre-determined fixed list of C ∈ N
possible categories. Usually, κ̂ is obtained as the argmax of
a learnt probability distribution p̂ = (p̂1, . . . , p̂C) ∈ (0, 1)C

over all C categories. Finally, Nx scores ŝ ∈ (0, 1) indicate
the probability of each box being correct.

The predicted Nx boxes are obtained by different filter-
ing mechanisms as a subset of a fixed numberNout (usually
about 105 to 106) of output boxes

ỹ(x,w) = (ỹ1, . . . , ỹNout). (9)

The latter are the regression and classification result of pre-
determined “prior” or “anchor boxes”. Predicted box local-
ization ξ̂ is usually learned as offsets and width- and height
scaling of fixed anchor boxes [43, 26] or region propos-
als [44] (see appendix B). The most prominent examples
(and the ones employed in all architectures we investigate)
of filtering mechanisms are score thresholding and Non-
Maximum Suppression. By score thresholding we mean
only allowing boxes which have ŝ ≥ εs for some fixed
threshold εs ≥ 0.

A.2. Non-Maximum Suppression (NMS).

NMS is an algorithm allowing for different output boxes
that have the same class and significant mutual overlap
(meaning they are likely to indicate the same visible in-
stance in x) to be reduced to only one box. Overlap is usu-
ally quantified as intersection over union (IoU). For two

bounding boxes A and B, their intersection over union is

IoU (A,B) =
|A ∩ B|
|A ∪ B| , (10)

i.e. the ratio of the area of intersection of two boxes and the
joint area of those two boxes, where 0 means no overlap and
1 means the boxes have identical location and size. Maxi-
mal mutual IoU between a predicted box ŷj and ground
truth boxes y is also used to quantify the quality of the pre-
diction of a given instance.

We call an output instance ŷi “candidate box” for another
box ŷj if it fulfills the following requirements:

1. score (ŝi ≥ εs above a chosen, fixed threshold εs)

2. identical class κ̂i = κ̂j

3. large mutual overlap IoU (ŷi, ŷj) ≥ εIoU for some
fixed threshold εIoU ≥ 0 (a widely accepted choice
which we adopt is εIoU = 0.5).

We denote the set of output candidate boxes for ŷj by
cand[ŷj]. Note, that we can also determine candidate boxes
for an output box ỹj . In NMS, all output boxes are sorted
by their score in descending order. Then, the box with the
best score is selected as a prediction and all candidates for
that box are deleted from the ranked list. This is done until
there are no boxes with ŝ ≥ εs left. Thereby selected boxes
form the Nx predictions.

A.3. Training of object detectors.

The “ground truth” or “label” data y from which an ob-
ject detector learns must contain localization information ξj

for each of j = 1, . . . , Nx annotated instances on each data
point x, as well as the associated Nx category indices κj .
Note that we denote labels by the same symbol as the cor-
responding predicted quantity and omit the hat (·̂).

Generically, deep object detectors are trained by stochas-
tic gradient descent or some variant such as AdaGrad [7], or
Adam [21] by minimizing an empirical loss

L = Lξ + Ls + Lp . (11)

For all object detection frameworks which we consider here
(and most architectures, in general) the loss function L
splits up additively into parts punishing localization inac-
curacies (ξ̃), score (s̃) assignment to boxes (assigning large
loss to high score for incorrect boxes and low score for cor-
rect boxes) and incorrect class probability distribution (p̃),
respectively. We explicitly give formulas for all utilized loss
functions in appendix B. The trainable weights w of the
model are updated in standard gradient descent optimiza-
tion by

w ← w − η∇wL(ỹ(x,w), y) (12)
where η is a learning rate factor. We denote by
g(x,w, y) := ∇wL(ỹ(x,w), y) the learning gradient on
the data point (y,x).

Figure 6. Full version of confidence estimation example in fig. 1. Top: DNN Score ŝ; bottom: meta classification confidence τ̂ involving
gradient features. True predictions with low confidence are assigned large meta classification confidences while false predictions are
assigned low values. This allows for improved filtering based on confidence.

A.4. Calibration.

Generally, “calibration” methods (or re-calibration) aim
at rectifying scores as confidences in the sense of section 1
such that the calibrated scores reflect the conditional fre-
quency of true predictions. For example, out of 100 predic-
tions with a confidence of 0.3, around 30 should be correct.

Confidence calibration methods have been applied to ob-
ject detection in [39] where temperature scaling was found
to improve calibration. In addition to considering the ex-
pected calibration error (ECE) and the maximum calibra-
tion error (MCE) [38], the authors of [39] argue that in
object detection, it is important that confidences are cali-
brated irrespective of how many examples fall into a bin.
Therefore, they introduced the average calibration error
(ACE) as a new calibration metric which is insensitive to
the bin counts. The authors of [24] introduce natural ex-
tensions to localization-dependent calibration methods and
a localization-dependent metric to measure calibration for
different image regions.

In Sec. 5, we evaluated the calibration of meta classifiers
in terms of the maximum (MCE , [38]) and average (ACE ,
[39]) calibration error which we define here. We sort the
examples into bins βi, i = 1, . . . , B of a fixed width (in our

case 0.1, refer to section 5) according to their confidence.
For each bin βi, we compute

acci =
TPi
|βi|

, confi =
1

|βi|

|βi|∑
j=1

ĉi (13)

where |βi| denotes the number of examples in βi and ĉi is
the respective confidence, i.e. the network’s score or a meta
classification probability. TPi denotes the number of cor-
rectly classified in βi. In standard classification tasks, this
boils down to the classification accuracy, whereas in the ob-
ject detection setting, this is the detectors precision in the
bin βi. A meta classifier performs a binary classification
on detector positives, so we keep with the notation used for
classifiers. Calibration metrics are usually defined as func-
tions of the bin-wise differences between acci and confi.
In particular, we investigate the following calibration error

metrics:

MCE = max
i=1,...,B

|acci − confi|, (14)

ACE =
1

B

B∑
i=1

|acci − confi|, (15)

ECE =
1

B

B∑
i=1

B

|βi|
|acci − confi|. (16)

Table 14 also shows the expected (ECE , [38]) calibration
error which was argued in [39] to be biased toward bins with
large amounts of examples. ECE is, thus, less informative
for safety-critical investigations.

B. Implemented Loss Functions
Here, we give a short account of the loss functions im-

plemented in our experiments.
YOLOv3. The loss function we used to train YOLOv3 has
the following terms:

LYv3
ξ (ŷ, y) =2

Nout∑
a=1

Nx∑
t=1

Iobjat ·
[
MSE

((
τ̃aw
τ̃ah

)
,

(
τ tw
τ th

))
+ BCE

(
σ

(
τ̃ax
τ̃ay

)
, σ

(
τ tx
τ ty

))]
,

(17)

LYv3
s (ỹ, y) =

Nout∑
a=1

Nx∑
t=1

[
Iobjat BCEa (σ(τ̃s),1Nout)

+ Inoobjat (y)BCEa (σ(τ̃s),0Nout
)
]
,

(18)

LYv3
p (ỹ, y) =

Nout∑
a=1

Nx∑
t=1

Iobjat BCE
(
σ(τ̃ap), σ(τ

t
p)
)
. (19)

Here, the first sum ranges over all Nout anchors a and the
second sum over the total number Ngt of ground truth in-
stances in y. MSE is the usual mean squared error (eq. (22))
for the regression of the bounding box size. As introduced
in [43], the raw network outputs (in the notation of theo-
rem 1 this is one component (ϕcT)ab of the final feature map
ϕT , see also appendix D) for one anchor denoted by

τ̃ = (τ̃x, τ̃y, τ̃w, τ̃h, τ̃s, τ̃p1 , . . . , τ̃pC) (20)

are transformed to yield the components of ỹ:

x̃ = ℓ · σ(τ̃x) + cx, ỹ = ℓ · σ(τ̃y) + cy, w̃ = πw · eτ̃w ,
h̃ = πh · eτ̃h , s̃ =σ(τ̃s), p̃j = σ(τ̃pj).

(21)

Here, ℓ is the respective grid cell width/height, σ denotes
the sigmoid function, cx and cy are the top left corner posi-
tion of the respective cell and πw and πh denote the width

and height of the bounding box prior (anchor). These re-
lationships can be (at least numerically) inverted to trans-
form ground truth boxes to the scale of τ̃ . We denote by
τ = (τx, τy, τw, τh, τs, τp1 , . . . , τpC) that transformation of
the (real) ground truth y which is collected in a feature map
γ. Then, we have

MSE(τ̃ , τ) =
∑
i

(τ̃i − τi)2. (22)

Whenever summation indices are not clearly specified, we
assume from the context that they take on all possible val-
ues, e.g. in eq. (17) w and h. Similarly, the binary cross
entropy BCE is related to the usual cross entropy loss CE
which is commonly used for learning probability distribu-
tions:

BCE(p, q) =
∑
i

BCEi(p, q)

=−
∑
i

qi log(pi) + (1− qi) log(1− pi),

(23)

CE(p, q) = −
∑
i

qi log(pi) (24)

where p, q ∈ (0, 1)d for some fixed length d ∈ N. Us-
ing binary cross entropy for classification amounts to learn-
ing C binary classifiers, in particular the “probabilities” p̃j
are in general not normalized. Note also, that each sum-
mand in eq. (18) only has one contribution due to the binary
ground truth 1Nout , resp. 0Nout . The binary cross entropy is
also sometimes used for the center location of anchor boxes
when the position within each cell is scaled to (0, 1), see
LYOLOv3
ξ .

The tensors Iobj and Inoobj indicate whether anchor a
can be associated to ground truth instance t (obj) or not
(noobj) which is determined as in [44] from two thresholds
ε+ ≥ ε− ≥ 0 which are set to 0.5 in our implementation.

Note, that both, Iobj and Inoobj only depend on the
ground truth y and the fixed anchors, but not on the out-
put regression results ỹ or the predictions ŷ. We express a
tensor with entries 1 with the sizeN as 1N and a tensor with
entries 0 as 0N . The ground truth t one-hot class vector is
σ(τ tp) := pt = (δi,κt

)Ci=1.
Faster R-CNN and Cascade R-CNN. Since Faster R-CNN
[44] and Cascade R-CNN [1] are two-stage architectures,
there are separate loss contributions for the Region Pro-
posal Network (RPN) and the Region of Interest (RoI) head,
the latter of which produces the actual proposals. For-
mally, writing θξ := (θx, θy, θw, θh) for the respectively
transformed ground truth localization, similarly θ̃ξ for the
RPN outputs ỹRPN and θ̃s the proposal score output (where

s̃a = σ(θ̃as) is the proposal score):

LRPN
ξ (ỹRPN, y) =

1

|I+|

NRPN
out∑
a=1

Nx∑
t=1

I+a Ĩ
obj
at smL1

β

(
θ̃aξ , θ

t
ξ

)
,

(25)

LRPN
s (ỹRPN, y) =

NRPN
out∑
a=1

Nx∑
t=1

[
Iobjat BCEa

(
σ(θ̃s),1NRPN

out

)
+ I−a Ĩ

noobj
at BCEa

(
σ(θ̃s),0NRPN

out

)]
.

(26)

The tensors Ĩobj and Ĩnoobj are determined as for YOLOv3
with ε+ = 0.7 and ε− = 0.3) but we omit their de-
pendence on y in our notation. Predictions are randomly
sampled to contribute to the loss function by the tensors
I+ and I−, which can be regarded as random variables.
The constant batch size b of predictions to enter the RPN
loss is a hyperparameter set to 256 in our implementa-
tion. We randomly sample n+ := min{|̃Iobj|, b/2} of
the |̃Iobj| positive anchors (constituting the mask I+) and
n− := min{|̃Inoobj|, b − n+} negative anchors (I−). The
summation of a ranges over the NRPN

out outputs of the RPN
(in our case, 1000). Proposal regression is done based on
the smooth L1 loss

smL1
β(θ̃, θ) :=

∑
i

{
1
2 |θ̃i − θi|2 |θ̃i − θi| < β

|θ̃i − θi| − β
2 |θ̃i − θi| ≥ β

,

(27)
where we use the default parameter choice β = 1

9 . The
final prediction ŷ of Faster R-CNN is computed from the
proposals and RoI results1 τ̃ in the RoI head:

x̃ =πw · τ̃x + πx, ỹ = πy · τ̃y + πy,

w̃ =πw · eτ̃w , h̃ = πh · eτ̃h , p̃ = Σ(τ̃p),
(28)

where Σi(x) := exi/
∑
j e
xj is the usual softmax function

and π := (πx, πy, πw, πh) is the respective proposal local-
ization. Denoting with τξ := (τx, τy, τw, τh) ground truth lo-
calization transformed relatively to the respective proposal:

LRoI
ξ (ỹ, y) =

1

|Iobj|

Nout∑
a=1

Nx∑
t=1

Iobjat smL1
β

(
τ̃aξ , τ

t
ξ

)
, (29)

LRoI
p (ỹ, y) =

Nout∑
a=1

Nx∑
t=1

[
Iobjat CE(Σ(τ̃ap), p

t)

+ Inoobjat CE(Σ(τ̃ap0), 1)
]
.

(30)

1The result τ̃ is similar to eq. (20), but without τ̃s where we have in-
stead C+1 classes, with one “background” class. We denote the respective
probability by p̃0.

Here, Iobj and Inoobj are computed with ε+ = ε− = 0.5.
The cascaded bounding box regression of Cascade R-CNN
implements the smooth L1 loss at each of three cascade
stages, where bounding box offsets and scaling are com-
puted from the previous bounding box regression results as
proposals.
RetinaNet. In the RetinaNet [26] architecture, score as-
signment is part of the classification.

LRet
ξ (ỹ, y) =

1

|Iobj|

Nout∑
a=1

Nx∑
t=1

Iobjat L
1
(
τ̃aξ , τ

t
ξ

)
, (31)

LRet
p (ỹ, y) =

1

|Iobj|

Nout∑
a=1

Nx∑
t=1

[
Iobjat

C∑
j=1

α(1− σ(τ̃apj))γF ·

· BCEj
(
σ(τ̃ap), p

t
)

+ Inoobjat (1− α)σ(τ̃ap0)γF · BCE
(
σ(τ̃ap0), 0

)]
.

(32)

For Iobj and Inoobj, we use ε+ = 0.5 and ε− = 0.4. Regres-
sion is based on the absolute loss L1(τ̃ , τ) =

∑
i |τ̃i − τi|

and the classification loss is a formulation of the well-
known focal loss with α = 0.25 and γF = 2. Bounding
box transformation follows the maps in eq. (28), where π
are the respective RetinaNet anchor localizations instead of
region proposals. The class-wise scores of the prediction
are obtained by p̃j = σ(τ̃pj), j = 1, . . . , C as for YOLOv3.
Theoretical loss derivatives. Here, we symbolically com-
pute the loss gradients w.r.t. the network outputs as obtained
from our accounts of the loss functions in the previous para-
graphs. We do so in order to determine the computational
complexity for D1L|ϕT

in appendix D. Note, that for all
derivatives of the cross entropy, we can use

d

dτ
[−y log(σ(τ))− (1− y) log(1− σ(τ))] = σ(τ)− y.

(33)
We then find for b = 1, . . . , Nout and features r ∈
{x, y,w, h, s, p1, . . . , pC}

∂

∂τ̃ br
LYv3
ξ =2

Nx∑
t=1

Iobjbt

 τ̃ br − τ tr r ∈ {w, h}
σ(τ̃ br)− σ(τ tr) r ∈ {x, y}
0 otherwise.

,

(34)

∂

∂τ̃ br
LYv3
s = δrs

Nx∑
t=1

[
Iobjbt (s̃b − 1) + Inoobjbt s̃b

]
, (35)

∂

∂τ̃ br
LYv3
p =

Nx∑
t=1

Iobjbt

C∑
i=1

δrpi(p̃
b
i − pti), (36)

where δij is the Kronecker symbol, i.e. δij = 1 if i = j and
0 otherwise. Further, with analogous notation for the output

variables of RPN and RoI

∂

∂θ̂br
LRPN
ξ =

1

|I+|

Nx∑
t=1

I+b Ĩ
obj
bt

·


θ̂br − θtr

|θ̂br − θtr| < β and
r ∈ {x, y,w, h}

sgn(θ̂br − θtr)
|θ̂br − θtr| ≥ β and
r ∈ {x, y,w, h}

0 otherwise

,

(37)
∂

∂θ̂br
LRPN
s = δrs

[
I+b Ĩ

obj
bt (ŝb − 1) + I−b Ĩ

noobj
bt ŝb

]
. (38)

Here, sgn denotes the sign function, which is the derivative
of | · | except for the origin. Similarly,

∂

∂τ̂ br
LRoI
ξ =

1

|Iobj|

Nx∑
t=1

Iobjbt

·


τ̂ br − τ tr

|τ̂ br − τ tr | < β and
r ∈ {x, y,w, h}

sgn(τ̂ br − τ tr)
|τ̂ br − τ tr | ≥ β and
r ∈ {x, y,w, h}

0 otherwise

,

(39)

∂

∂τ̂ br
LRoI
p = −

Nx∑
t=1

Iobjbt

C∑
j=1

ptj

(
δpjr −

C∑
k=0

δpkrΣ
k(τ̂ bp)

)

+ Inoobjbt

(
δp0r −

C∑
k=0

δpkrΣ
k(τ̂ bp)

)]
.

(40)

Note that the inner sum over j only has at most one term
due to δpjr. With σ′(τ) = σ(τ)(1 − σ(τ)), we finally find
for RetinaNet

∂

∂τ̃ br
LRet
ξ =

1

|Iobj|

Nx∑
t=1

Iobjbt

·
{

sgn(τ̃ br − τ tr) r ∈ {x, y,w, h}
0 otherwise

,

(41)

∂

∂τ̃ br
LRet
p =

1

|Iobj|

Nx∑
t=1

[
Iobjbt

C∑
j=1

δpjrα(1− σ(τ̃ bpj))γF ·

· [−γFσ(τ̃ bpj)BCEj(σ(τ̃ bp), pt) + σ(τ̃ bpj)− 1]

+ Inoobjbt δp0r(1− α)σ(τ̃ bp0)γF ·

· [−γF(1− σ(τ̃ bp0)) log(1− σ(τ̃ bp0)) + σ(τ̃ bp0)]

]
.

(42)

Table 6. Dataset splits used for training and evaluation of object
detectors. Note, that we train meta classifiers and meta regressors
on a validation part of the evaluation split and evaluate it on the
complementary split.

Dataset training evaluation # eval images

VOC 2007+2012 trainval 2007 test 4952
COCO train2017 val2017 5000

KITTI
random part
of training

complement part
of training 2000

C. Implementation details
Here, we state details of the implementations of our

framework to different architectures, and on different
datasets.

C.1. Datasets

In order to show a wide range of applications, we inves-
tigate our method on the following object detection datasets
(see table 6 for the splits used). Meta classification and meta
regression models are as post-processing modules fitted on
a validation sample of the evaluation dataset and their per-
formance is evaluated on the complementary sample of the
evaluation dataset (in cross-validation).
Pascal VOC 2007+2012 [8]. The Pascal VOC dataset is
an object detection benchmark of everyday images involv-
ing 20 different object categories. We train on the 2007 and
2012 trainval splits, accumulating to 16550 train images and
we evaluate on the 2007 test split of 4952 images. For train-
ing, we include labels marked as “difficult” in the original
annotations.
MS COCO 2017 [27]. The MS COCO dataset constitutes
a second vision benchmark involving 2D bounding box de-
tection annotations for everyday images with 80 object cat-
egories. We train on the train2017 split of 118287 images
and evaluate on the 5000 images of the val2017 split.
KITTI [11]. The KITTI vision benchmark contains 21 real
world street scenes annotated with 2D bounding boxes. We
randomly divide the 7481 labeled images into a training
split of 5481 images and use the complement of 2000 im-
ages for evaluation.

C.2. Detectors

For our experiments, we employ three common object
detection architectures, namely YOLOv3 with Darknet53
backbone [43], Faster R-CNN [44] and RetinaNet [26],
each with a ResNet50FPN [15] backbone. Moreover, we in-
vestigate a state-of-the-art detector in Cascade R-CNN [1]
with a large ResNeSt200FPN [57] backbone. We started
from PyTorch [41] reimplementations, added dropout lay-
ers and trained from scratch on the datasets in table 6. We
list some of the detector-specific details.
YOLOv3. The basis of our implementation is a publicly
available GitHub repository [55]. We position dropout lay-

ers with p = 0.5 before the last convolutional layers of each
detection head. Gradient features are computed over the last
two layers in each of the three detection heads as the final
network layers have been found to be most informative in
the classification setting [40]. Since each output box is the
result of exactly one of the three heads, we only have two
layers for gradients per box resulting in 2× 3 gradients per
box (2 layers per 3 losses) as indicated in table 1. We train
an ensemble of 5 detectors for each dataset from scratch.
Faster R-CNN. Based on the official Torchvision imple-
mentation, our model uses dropout (p = 0.5) before the
last fully connected layer of the architecture (classification
and bounding box prediction in the Fast R-CNN head). We
compute gradient features for the last two fully connected
layers of the Fast R-CNN head as well as for the last two
convolutional layers of the RPN per box (objectness and lo-
calization), leading to 4 × 2 gradients per box (2 + 2 for
localization, 2 for classification and 2 for proposal object-
ness).
RetinaNet. We also employ RetinaNet as implemented in
Torchvision with (p = 0.5)-dropout before the last convolu-
tional layers for bounding box regression and classification.
Gradients are computed for the last two convolutional lay-
ers for bounding box regression and classification resulting
in 2× 2 gradients per prediction.
Cascade R-CNN. We use the Detectron2[56]-supported
implementation of ResNeSt provided by the ResNeSt au-
thors Zhang et al. [57] and the pre-trained weights on the
MS COCO dataset. We train from scratch on Pascal VOC
and KITTI. Since this model is primarily interesting for in-
vestigation due to its naturally strong score baseline based
on cascaded regression, we do not report MC dropout re-
sults for it. Gradient uncertainty features are computed for
the last two fully connected layers (bounding box regression
and classification) of each of the three cascades. The loss
of later cascade stages depends in principle on the weights
of previous cascade stages. However, we only compute the
gradients with respect to the weights in the current stage re-
sulting in 2 × 6 (3 stages for bounding box regression and
classification) gradients for the Cascade R-CNN head. Fur-
thermore, we have the 2 × 2 RPN gradients as in Faster
R-CNN.

C.3. Uncertainty baselines

We give a short account of the baselines implemented
and investigated in our experiments.
Score. By the score, we mean the box-wise objectness
score for YOLOv3 and the maximum softmax probabil-
ity for Faster R-CNN, RetinaNet and Cascade R-CNN. As
standard object detection pipelines discard output bounding
boxes based on a score threshold, this quantity is the base-
line for discriminating true against false outputs.
Entropy. The entropy is a common “hand-crafted” uncer-

Table 7. Ablation on the temperature parameter T for the energy
score in terms of meta classification (AuROC and AP) and meta
regression (R2).

AuROC AP R2

T = 1 92.52± 0.03 91.86± 0.04 62.12± 0.09
T = 10 78.42± 0.13 81.75± 0.08 32.92± 0.20
T = 100 95.66± 0.02 95.33± 0.03 71.79± 0.06
T = 1000 95.62± 0.03 95.33± 0.04 71.78± 0.05

Score 96.53± 0.05 96.87± 0.03 78.86± 0.05
MD 98.23± 0.02 98.06± 0.02 85.88± 0.10
GSfull 98.04± 0.03 97.81± 0.06 85.40± 0.11

Table 8. Ablation on the sample count size NMC for MC dropout
in terms of meta classification (AuROC and AP) and meta re-
gression (R2). Results obtained from the sample standard devia-
tion.

AuROC AP R2

NMC = 10 97.40± 0.04 96.91± 0.06 80.85± 0.10
NMC = 15 97.50± 0.03 97.08± 0.07 81.28± 0.09
NMC = 20 97.69± 0.03 97.28± 0.05 82.11± 0.09
NMC = 25 97.64± 0.03 97.20± 0.04 81.94± 0.12
NMC = 30 97.60± 0.07 97.17± 0.10 82.10± 0.11
NMC = 35 97.71± 0.03 97.29± 0.05 82.17± 0.13
NMC = 40 97.69± 0.04 97.29± 0.06 82.12± 0.13

Score 96.53± 0.05 96.87± 0.03 78.86± 0.05
MD 98.23± 0.02 98.06± 0.02 85.88± 0.10
GSfull 98.04± 0.03 97.81± 0.06 85.40± 0.11

tainty measure based on the classification output p̃ ∈ [0, 1]C

(softmax or category-wise sigmoid) and given by

H(p̃) = −
C∑
c=1

p̃c log(p̃c). (43)

Energy. As an alternative to the maximum softmax proba-
bility and the entropy, Liu et al. proposed an energy score
depending on a temperature parameter T given by

E(τ̃) = −T log

C∑
c=1

eτ̃pc/T (44)

based on the probability logits (τ̃p1 , . . . , τ̃pC). We found
that T = 100 delivers the strongest results, see table 7
where we compared different values of T (like in [29]) for
YOLOv3 on the KITTI dataset in terms of meta classifica-
tion and meta regression performance.
Full softmax. We investigate an enveloping model of all
classification-based uncertainty features by involving all
probabilities (p̃1, . . . , p̃C) directly as co-variables in the
meta classifier or meta regression model. We find that it
outperforms all purely classification-based models, which
is expected.
MC dropout (MC). As a common baseline, we investigate
Monte-Carlo dropout uncertainty. Since we are explicitly
interested in the uncertainty content of MC dropout, we
only include anchor-wise standard deviations of the entire

Table 9. Ablation on the ensemble size Nens for deep ensembles in
terms of meta classification (AuROC and AP) and meta regres-
sion (R2). Results obtained from the sample standard deviation.

AuROC AP R2

Nens = 3 97.53± 0.03 97.17± 0.05 82.63± 0.13
Nens = 4 97.79± 0.04 97.48± 0.06 83.62± 0.12
Nens = 5 97.92± 0.04 97.63± 0.05 84.18± 0.12
Nens = 6 98.04± 0.03 97.75± 0.04 84.64± 0.16
Nens = 7 98.06± 0.03 97.80± 0.05 84.78± 0.11
Nens = 8 98.08± 0.02 97.80± 0.03 84.91± 0.10

Score 96.53± 0.05 96.87± 0.03 78.86± 0.05
MD 98.23± 0.02 98.06± 0.02 85.88± 0.10
GSfull 98.04± 0.03 97.81± 0.06 85.40± 0.11

network output ỹ obtained from 30 dropout samples. We
found that computing more samples does not significantly
improve predictive uncertainty content as seen in the ab-
lation study on the MC sample count NMC in table 8 for
YOLOv3 on the KITTI dataset. Meta classification perfor-
mance can be further improved by involving dropout means
of ỹ. However, MC dropout means do not carry an intrinsic
meaning of uncertainty as opposed to standard deviations,
so we do not include them in our main experiments.
Deep ensembles (E). As another common, sampling-based
baseline, we investigate deep ensemble uncertainty ob-
tained from ensembles of size 5. We find that larger ensem-
bles do not significantly improve meta classification per-
formance. For reference, we show an ablation on the en-
semble size Nens for YOLOv3 on the KITTI dataset in ta-
ble 9 in terms of meta classification and meta regression. By
the same motivation like for MC dropout, we only include
anchor-wise standard deviations over forward passes from
the ensemble.
MetaDetect (MD). The output-based MetaDetect frame-
work computes uncertainty features for use in meta clas-
sification and meta regression from pre-NMS variance in
anchor-based object detection. In our implementation, we
compute the 46 + C (where C is the number of categories)
MetaDetect features[48] which include the entire network
output ỹ. The MetaDetect framework is, therefore, an en-
veloping model to any uncertainty features based on the
object detection output (in particular to any classification-
based uncertainty) which we also find in our experiments.
We include it in order to cover all such baselines.
Details of gradient-based uncertainty (GS). In our exper-
iments, we investigate two gradient-based uncertainty mod-
els. While GS||·||2 is based on the two-norms of box-wise
gradients, GSfull is utilizes all the six maps in eq. (3). While
the two norms || · ||1 and || · ||2 directly compute the magni-
tude of a vector, the maps mean(·) and std(·) do not im-
mediately capture a concept of length. However, they have
been found in [40] to yield decent separation capabilities.
Similarly, the component-wise min(·) and max(·) contain
relevant predictive information. Note, that the latter two are

Detector
Bboxes

Score

Uncertainty
Metrics

Meta
Classification

Baseline

MetaFusion

NMS Threshold

Figure 7. Schematic sketch of the baseline detection pipeline and
the alternative MetaFusion pipeline for an object detector.

related to the sup-norm || · ||∞ but together contain more
information. While the last layer gradients themselves are
highly informative, we allow for gradients of the last two
layers in our main experiments. In table 10 we show meta
classification and meta regression performance of gradient-
based models with features obtained from different num-
bers of network layers of the YOLOv3 model on the KITTI
dataset. Starting with the last layer gradient only (# lay-
ers is 1), the gradient features from the two last layers and
so on. We see that meta classification performance quickly
saturates and no significant benefit can be seen from using
more than 3 layers. However, meta regression can still be
improved slightly by using up to 5 network layers.

In some of our experiments, we compute gradients
via the PyTorch autograd framework, iteratively for each
bounding box. While this alleviates significant implemen-
tation effort, this procedure is computationally far less effi-
cient than directly computing the gradients from the formu-
las in appendix B as is done in our runtime measurements.

In order to save on computational effort, we compute
gradient features not for all predicted bounding boxes. We
use a small score threshold of 10−4 (KITTI, Pascal VOC),
resp. 10−2 (COCO) as a pre-filter. On average, this pro-
duces ∼ 150 predictions per image. These settings lead
to a highly disbalanced TP/FP ratio post NMS on which
meta classification and meta regression models are fitted.
On YOLOv3, for example, these ratios are for Pascal VOC:
0.099, MS COCO: 0.158 and for KITTI: 0.464, so our mod-
els fit on significantly more FPs than TPs. However, our
meta classification and meta regression models (see sec-
tion 4) are gradient boosting models which tend to reflect
well-calibrated confidences / regressions on the domain of
training data. Our results (e.g. table 2) obtained from cross-
validation confirm that this ratio does not constitute an ob-
stacle for obtaining well-performing models on data not
used to fit the model. For gradient boosting models, we em-
ploy the XGBoost library [3] with 30 estimators (otherwise
standard settings).

C.4. MetaFusion framework

In section 5, we showed a way of trading uncertainty
information for detection performance. Figure 7 shows a
sketch of the resulting pipeline, where the usual object de-

Table 10. Ablation on the number of network layers used in terms of meta classification (AuROC and AP) and meta regression (R2).
Gradient features per layer are accumulated to those of later layers starting from the last layer of the DNN.

layers
Metric Score 1 2 3 4 5

AuROC 96.53± 0.05 98.04± 0.03 98.06± 0.02 98.18± 0.03 98.18± 0.03 98.19± 0.02
AP 96.87± 0.03 97.81± 0.06 97.83± 0.04 97.98± 0.05 98.00± 0.04 98.04± 0.04
R2 78.89± 0.05 84.35± 0.05 85.40± 0.11 86.04± 0.11 86.18± 0.07 86.24± 0.09

tection pipeline is shown in blue. The standard object de-
tection pipeline relies on filtering out false positive output
boxes on the basis of their score (see also fig. 6). An altered
confidence estimation like meta classification can improve
the threshold-dependent detection quality of the object de-
tection pipeline. This way, boxes which are falsely assigned
a low score can survive the thresholding step. Similarly, FPs
with a high score may be suppressed by proper predictive
confidence estimation methods. This approach is not lim-
ited to meta classification, however, our experiments show
that meta classification constitutes such a method.

D. Computational complexity
In this section, we discuss the details of the setting in

which theorem 1 was formulated an give a proof for the
statements made there. The gradients for our uncertainty
features are usually computed via backpropagation only for
a few network layers. Therefore, we restrict ourselves to
the setting of fully convolutional neural networks. Set-
ting. As in [49, Chapter 20.6], we regard a (convolutional)
neural network as a graph of feature maps with vertices
V =

⊔T
t=0 Vt arranged in layers Vt. For our considera-

tion it will suffice to regard them as sequentially ordered.
We denote [n] := {1, . . . , n} for n ∈ N. Each layer Vt
contains a set number kt := |Vt| of feature map activa-
tions (channels) ϕct ∈ Rht×wt , c ∈ [kt]. We denote the
activation of Vt by ϕt = (ϕ1t , . . . , ϕ

kt
t). The activation

ϕt+1 ∈ (Rht+1×wt+1)kt+1 is obtained from ϕt by convo-
lutions. We have kt × kt+1 quadratic filter matrices

(Kt+1)
d
c ∈ R(2st+1)×(2st+1), c ∈ [kt]; d ∈ [kt+1],

(45)
where st is a (usually small) natural number, the spatial
extent of the filter. Also, we have respectively kt+1 bi-
ases bdt+1 ∈ R, d ∈ [kt+1]. The convolution (actually
in most implementations, the cross correlation) of K ∈
R(2s+1)×(2s+1) and ϕ ∈ Rh×w is defined as

(K ∗ ϕ)ab :=
s∑

m,n=−s
Ks+1+p,s+1+qϕa+p,b+q, (46)

where a = 1, . . . , h and b = 1, . . . , w. This is, strictly
speaking, only correct for convolutions with stride 1, al-
though a closed form can be given for the more general

case. For our goals, we will use stride 1 to upper bound the
FLOPs which comes with the simplification that the feature
maps’ sizes are conserved. We then define

ψdt+1 =

kt∑
c=1

(Kt+1)
d
c ∗ ϕct + bdt+11ht×wt

, d ∈ [kt+1].

(47)
Finally, we apply activation functions αt : R → R to each
entry to obtain ϕt+1 = αt+1(ψt+1). In practice, αt is
usually a ReLU activation, i.e. αt(x) = max{x, 0} or a
slight modification (e.g. leaky ReLU) of it and we will treat
the computational complexity of this operation later. We
can then determine the computational expense of comput-
ing ψt+1 from ϕt. In the following, we will be interested in
the linear convolution action

CKt : Rkt−1×ht−1×wt−1 → Rkt×ht×wt ,

(CKtϕt−1)
d
ab :=

(
kt∑
c=1

(Kt)
d
c ∗ ϕct

)
ab

,
(48)

where d ∈ [kt], a ∈ [ht] and b ∈ [wt]. Note that CK is also
linear in Kt. On the last layer feature map ϕT we define
the loss function L : (ϕT , γ) 7→ L(ϕT , γ) ∈ R. Here,
γ stands for the ground truth2 transformed to feature map
size RhT×wT×kT . In order to make dependencies explicit,
define the loss of the sub-net starting at layer t by ℓt, i.e.

ℓT (ϕT) := L(ϕT , γ), ℓt−1(ϕt−1) := ℓt(αt(ψt)).
(49)

Straight-forward calculations yield

∇KT
L =∇KT

(ℓT ◦ αT ◦ ψT (KT))

=D1L|ϕT
·DαT |ψT

· ∇KT
ψT

(50)

∇KT−1
L =∇KT−1

(ℓT ◦ αT ◦ ψT ◦ αT−1 ◦ ψT−1(KT−1))

=D1L|ϕT
·DαT |ψT

· CKT

·DαT−1|ψT−1
· ∇KT−1

ψT−1.

(51)

Here, D denotes the total derivative (D1 for the first vari-
able, resp.) and we have used the linearity of CKT .
Note, that in section 4, we omitted the terms DαT |ψT

and

2The transformations are listed in appendix B for the entries τ of ϕT .

DαT−1|ψT−1
. We will come back to them later in the dis-

cussion. For the gradient features we present in this paper,
each ỹj for which we compute gradients receives a binary
mask µj such that µj · ϕT are the feature map representa-
tions of candidate boxes for ỹj (see appendix A). The scalar
loss function then becomes L(µjϕT , γj) for the purposes
of computing gradient uncertainty, where γj is yj in fea-
ture map representation. We address next, how this mask-
ing influences eq. (50), eq. (51) and the FLOP count of our
method.
Computing the mask. The complexity of determining
µj (i.e. finding cand[ỹj]) is the complexity of comput-
ing all mutual IoU values between ỹj and the nT :=
hT · wT · kT other predicted boxes. Computing the
IoU of a box b1 = (xmin

1 , ymin
1 , xmax

1 , ymax
1) and b2 =

(xmin
2 , ymin

2 , xmax
2 , ymax

2) can be done in a few steps with
an efficient method exploiting the fact that:

U =A1 +A2 − I, IoU = I/U, (52)

where the computation of the intersection area I and the
individual areas A1 and A2 can each be done in 3 FLOP,
resulting in 12 FLOP per pair of boxes. Note that different
localization constellations of b1 and b2 may result in slightly
varying formulas for the computation of I but the con-
stellation can be easily detemined by binary checks which
we ignore computationally. Also, the additional check for
the class and sufficient score will be ignored, so we have
12nT FLOP per mask µj . Inserting the binary mask3 µj in
eq. (50) and eq. (51) leads to the replacement of D1L|ϕT

·
DαT |ψT

by DLj := D1L(·, γj)|µjϕT
· µj · DαT |ψT

for
each relevant box ỹj .

In table 11 we have listed upper bounds on the number
of FLOP and elementary function evaluations performed for
the computation of DLj for the investigated loss functions.
The numbers were obtained from the explicit partial deriva-
tives computed in appendix B. In principle, those formulas
allow for every possible choice of b ∈ [Nout] which is why
all counts are proportional to it. Practically, however, at
most the |µj | candidate boxes are relevant which need to be
identified additionally as foreground or background for ỹj

in a separate step involving an IoU computation between
ỹj and the respective anchor. The total count of candidate
boxes in practice is on average not larger than ∼ 30. When
evaluating the formulas from appendix B note, that there
is only one ground truth box per gradient and we assume
here, that one full forward pass has already been performed
such that the majority of the appearing evaluations of ele-
mentary functions (sigmoids, exponentials, etc.) have been
computed beforehand. This is not the case for the RetinaNet
classification loss (42). In table 11 we also list the addi-
tional post-processing cost for the output transformations

3See section 4. The mask µj selects the feature map representation of
cand[ỹj] out of ϕT .

(see appendix B, eqs. (21) and (28)) required for sampling-
based uncertainty quantification like MC dropout or deep
ensemble samples (“sampling pp”). The latter are also pro-
portional toNout, but also to the numberNsamp of samples.
Proof of theorem 1. Before we begin the proof, we first
re-state the claims of theorem 1.

Theorem 2 The number of FLOP required to compute the
last layer (t = T) gradient ∇KT

L(µjϕT (KT), γ
j) is

O(kThw + kT kT−1(2sT + 1)4). Similarly, for earlier
layers t, i.e. ∇Kt

L(µjϕT (Kt), γ
j), we have O(kt+1kt +

ktkt−1), provided that we have previously computed the
gradient for the consecutive layer t + 1. Performing vari-
ational inference only on the last layer, i.e. ϕT−1 requires
O(kT kT−1hw) FLOP per sample.

Our implementations exclusively use stride 1 convolu-
tions for the layers indicated in section 5, so wT = wT−1 =
wT−2 =: w, resp. hT = hT−1 = hT−2 =: h. As be-
fore, we denote nt := hwkt, and regard DLj as a 1 × nT
matrix. Next, regard the matrix-vector multiplication to be
performed in eq. (50). Since for all t ∈ [T] we have that
ψt is linear in Kt, we regard ∇Kt

ψt as a matrix acting on
the filter space Rkt−1×kt×(2st+1)2 . For d ∈ [kt], ψdt only
depends on Kd

t (see eq. (47)), so ∇Kt
ψt only has at most

kt−1 · (2st + 1)2 · nt non-vanishing entries. Therefore, re-
gard it as a (nt × (kt−1(2st + 1)2))-matrix. We will now
show that this matrix has kt(2st + 1)2-sparse columns.

Let c ∈ [kt], d ∈ [kt−1], p, q ∈ {−st, . . . , st}, a ∈ [ht]
and b ∈ [wt]. One easily sees from eqs. (46) and (47) that

∂

∂((Kt)dc)pq
(ψt)

d
ab = (ϕt−1)

c
a+p−st−1,b+q−st−1, (53)

where ϕct−1 is considered to vanish for a+p−st−1 /∈ [ht]
and b + q − st − 1 /∈ [wt]. Consistency with the definition
of p and q requires that both the conditions

1 < a ≤ 2st + 2, 1 < b ≤ 2st + 2 (54)

are satisfied, which means that (∇Kt
ψt)

d can only have
kt(2st + 1)2 non-zero entries. Appealing to sparsity
∇KT

ψT in eq. (50) is then, effectively, a (kT−1 · (2sT +
1)2)× (kT · (2sT +1)2)-matrix, resulting in a FLOP count
of

[2 · kT (2sT + 1)2 − 1] · [kT−1 · (2sT + 1)2] (55)

for the multiplication DLj · ∇KT
ψT giving the claimed

complexity considering that the computation of µj is
O(kThw).

Next, we investigate the multiplication in eq. (51), in par-
ticular the multiplication DLj · CKT as the same sparsity
argument applies to ∇KT−1

ψT−1. First, for t ∈ [T], re-
gard CKt as a (nt × nt−1)-matrix acting on a feature map

Table 11. Upper bounds on FLOP and elementary function evaluations performed during the computation of DLj (all contributions) and
post processing for sampling-based uncertainty quantification (sampling pp) for Nsamp inference samples.

YOLOv3 Faster/Cascade R-CNN RetinaNet

FLOP DLj (9 + C)Nout 10NRPN
out + (2 + 2C)Nout (18 + 11C)Nout

FLOP sampling pp 8NoutNsamp (9 + 2C)NoutNsamp 8NoutNsamp

evaluations DLj 0 0 2(1 + C)Nout

evaluations sampling pp (5 + C)NoutNsamp (3 + C)NoutNsamp (3 + C)NoutNsamp

ϕ ∈ Rnt−1 from the left via

(
CKtϕ

)d
ab

=

kt−1∑
c=1

[
(Kt)

d
c ∗ ϕc

]
ab

=

kt−1∑
c=1

st∑
m,n=−st

[(Kt)
d
c]st+1+m,st+1+n(ϕ

c)a+m,b+n,

(56)

where d ∈ [kt], b ∈ [wt] and a ∈ [ht] indicate one particu-
lar row in the matrix representation of CKt . From this, we
see the sparsity of CKt , namely the multiplication result of
row (d, a, b) acts on at most kt−1 ·(2st+1)2 components of
ϕt−1 (i.e. kt−1(2st+1)2-sparsity of the rows). Conversely,
we also see that at most kt · (2st + 1)2 convolution prod-
ucts (CKtϕ)dab have a dependency on one particular feature
map pixel (ϕc)ãb̃ (i.e. kt(2st+1)2-sparsity of the columns).
Now, let t ∈ [T − 1] and assume that we have already com-
puted the gradient

∇Kt+1
L =∇Kt+1

ℓt+1(ϕt+1(Kt+1))

=Dℓt+1|ϕt+1
· αt+1|ψt+1

· ∇Kt+1
ψt+1,

(57)

then by backpropagation, i.e. eq. (49), we obtain

∇Kt
L =∇Kt

[ℓt+1 ◦ αt+1 ◦ ψt+1(ϕt(Kt))]

=Dℓt+1|ϕt+1 · αt+1|ψt+1 · CKt+1 ·Dαt|ψt · ∇Ktψt.

(58)

Here, the first two factors have already been computed,
hence we obtain a FLOP count for subsequently comput-
ing ∇Kt

L of

[2 · kt+1(2st+1 + 1)2 − 1] · [kt(2st + 1)2]

+ [2 · kt(2st + 1)2 − 1] · [kt−1(2st + 1)2]
(59)

via the backpropagation step from ∇Kt+1
L. The claim in

theorem 1 addressing eq. (51), follows for t = T − 1 in
eq. (59).

Finally, we address the computational complexity for
sampling-based uncertainty quantification methods with
sampling on ϕT−1. This is applicable, e.g., for dropout on
the last layer (as in our experiments) or a deep sub-ensemble
[53] sharing the forward pass up to the last layer (note, that

we do not use sub-ensembles in our experiments, but reg-
ular deep ensembles). Earlier sampling leads to far higher
FLOP counts. Again, we ignore the cost of dropout itself as
it is random binary masking together with a respective up-
scaling/multiplication of the non-masked entries by a con-
stant. The cost stated in theorem 1 results from the residual
forward pass ϕT−1 7→ ϕT = αT (C

KT · ϕT−1 + bT) where
we now apply previous results. Obtaining all nT entries
in the resulting sample feature map requires a total FLOP
count of

2nT kT−1(2sT + 1)2 − 1 + nT (60)

as claimed, where we have considered the sparsity of CKT .
The last term results from the bias addition.
Discussion. A large part of the FLOP required to com-
pute gradient features results from the computation of the
masks µj and the termDLj for each relevant predicted box.
In table 11 we have treated the latter separately and found
that, although the counts listed for DLj apply to each sep-
arate box, sampling post-processing comes with consider-
able computational complexity as well. In that regard, we
have similar costs for gradient features and sampling over
the last network layer. Note in particular, that computing
DLj requires no new evaluation of elementary functions,
as opposed to sampling. Once DLj is computed for ỹj ,
the last layer gradient can be computed in O(kT kT−1) and
every further gradient for layer Vt in O(kt+1kt + ktkt−1).
Each sample results inO(nT kT−1) with sampling on ϕT−1.
Sampling any earlier results in additional full convolution
forward passes which also come with considerable com-
putational costs. We note that sampling-based epistemic
uncertainty can be computed in parallel with all Nsamp

forward passes being performed simultaneously. Gradient
uncertainty features, in contrast, require one full forward
pass for the individual gradients ∇Kt

L(µjϕT (Kt), γ
j) to

be computed. Therefore, gradient uncertainty features ex-
perience a slight computational latency as compared to sam-
pling methods. We argue that in principle, all following
steps (computation of µj and ∇Kt

L(µjϕT (Kt), γ
j)) can

be implemented to run in parallel as no sequential order of
computations is required. We have not addressed the com-
putations of mapping the gradients to scalars from eq. (3)
which are roughly comparable to the cost of computing the
sample std for sampling-based methods, especially once the

sparsity of DLj has been determined in the computation
of ∇KT

L. The latter also brings a significant reduction in
FLOP (from nT to |µj |) which cannot be estimated more
sharply, however. Since DLj is sparse, multiplication from
the right with DαT |ψT

in eqs. (50) and (51) for a leaky
ReLU activation only leads to lower-order terms. The same
terms were also omitted before in determining the compu-
tational complexity of sampling uncertainty methods. Also,
for this consideration, we regard the fully connected layers
used for bounding box regression and classification in the
Faster/Cascade R-CNN RoI head as (1×1)-convolutions to
stay in the setting presented here.

E. Theoretical Link with Empirical Findings.

Here, we elaborate on the points raised in section 3 by
considering data (y, x) ∼ p(y, x) = p(y|x)p(x) and a para-
metric classification model

fw : x 7→ f(y|x,w) = ŷ(x,w) (61)

estimating p(y|x). The labels y and the model’s class
prediction y = argmaxc∈Cf(y|x,w) are categorical over
a class space C = {1, . . . , C}. For a loss function
L = L((y, x), f(·|·, w)) (e.g., the negative log-likelihood
L((y, x), f(·|·, w)) = − log(f(y|x,w))), we compute the
gradient

g(x) = g(x,w, y) = ∇wL((y, x), f(·|·, w)) (62)

where we neglect the implicit w-dependency in y(x) since
y(x) is locally constant with discontinuity on decision
boundaries of f(·|·, w). This self-learning gradient coin-
cides with the ordinary learning gradient g(x,w, y) with
frequency P (y = y(x)) (the accuracy of the model).

We can investigate whether g(x) is large (in the sense
of some metric M like M(g) = ||g||ρ for ρ ∈ [1,∞]) sta-
tistically whenever the prediction y(x) is uncertain / prone
to error. Thus, we compare conditional distributions over
M(g(x)) conditioned to incorrect predictions y(x) ̸= y ver-
sus correct predictions y = y. The application of different
risk functionals to the distributions can then relate the statis-
tical magnitudes ofM(g) conditional to y (larger functional
values for statistically larger values of M(g)). Investigating
the expected value as a simple risk functional, we search
conditions for

E(y,x)[M(g(x))|y(x) = y] < E(y,x)[M(g(x))|y ̸= y].
(63)

We first call ε(x) the conditional error rate and ε the total er-
ror rate of the model fw under the distribution p(y, x) with

ε(x) =
∑
c̸=y(x)

p(c|x), ε = Ex∼p(x)[ε(x)]. (64)

The conditional expectations then yield

E(y,x)∼p(y,x)[M(g(x))|y(x) ̸= y]

=

∫ ∑
y ̸=y(x) p(y|x)M(g(x)) dp(x)

P (y(x) ̸= y)

=
1

ε
Ex∼p(x)[ε(x)M(g(x))]

= E[M(g(x))] +
Cov(ε(x),M(g(x)))

ε
(65)

E(y,x)∼p(y,x)[M(g(x))|y(x) = y]

=

∫
(1− ε(x))M(g(x)) dp(x)

P (y(x) = y)

=
1

1− εEx∼p(x)[(1− ε(x))M(x)]

= E[M(g(x))] +
Cov(ε(x),M(g(x)))

ε− 1
.

(66)

Therefore, E[M(g(x))] and the total error rate ε drop out of
eq. (63), which is finally equivalent to

Cov(ε(x),M(g(x))) > 0. (67)

For accurate models f , the self-learning gradient g(x) will
be close to the real gradient g(x,w, y), so the above co-
variance will be close to Cov(ε(x),M(g(x,w, y))). The
positivity of the latter has a clear interpretation in terms
of epistemic uncertainty, in that learning steps are larger
whenever the model performance is poor (ε(x) is large).
In such regions, the model still attempts to adapt strongly
to new instances, whereas little adaptation is given for in-
stances where the model performance is already good (ε(x)
is small). That such local improvement are in fact possi-
ble is an easy consequence of the universal approximation
property of deep neural networks.

That the condition for the self-learning gradient in (67)
holds can be seen in the classification experiments con-
ducted and shown in [40, Fig. 2] and [51, Fig. 2] where
the distributions of M(g(x)) are explicitly conditioned to
true and false predictions.

F. Further Numerical Results
F.1. Non-redundancy with output-based uncer-

tainty

Gradient features show significant improvements when
combined with output- or sampling-based uncertainty quan-
tification methods (see table 2 and table 3). We show addi-
tional meta classification and meta regression results in ta-
ble 12 and in table 13 to further illustrate this finding. First,
in table 12 we find that adding GSfull to the raw object de-
tection output features ỹ performs similarly as the combi-
nation GSfull+MD. In fact, when directly comparing MD

Table 12. Meta classification (AuROC and AP) and meta regression (R2) performance of baseline methods ,
variants of gradient metrics and different combinations of output-based uncertainty quantification methods with gradient metrics

(mean ± std). We also show the results of using the entire network output ỹ for meta classification and regression, as well, as adding
sampling means to standard deviation features for MC and E.

Pascal VOC COCO KITTI

YOLOv3 AuROC AP R2 AuROC AP R2 AuROC AP R2

Score 90.68± 0.06 69.56± 0.12 48.29± 0.04 82.97± 0.04 62.31± 0.05 32.60± 0.02 96.55± 0.04 96.87± 0.03 78.83± 0.05
Entropy 91.30± 0.02 61.94± 0.06 43.24± 0.03 76.52± 0.02 42.52± 0.04 21.10± 0.04 94.78± 0.03 94.82± 0.05 69.33± 0.08
Energy 92.59± 0.02 64.65± 0.06 47.18± 0.03 75.39± 0.02 39.72± 0.06 17.94± 0.02 95.46± 0.05 94.63± 0.08 70.39± 0.10
Full Softmax 93.81± 0.06 72.08± 0.15 53.86± 0.11 82.91± 0.06 58.65± 0.10 36.95± 0.13 97.10± 0.02 96.90± 0.04 78.79± 0.12
Full output ỹ 95.84± 0.04 78.84± 0.10 60.67± 0.18 86.31± 0.05 67.46± 0.07 44.32± 0.11 98.35± 0.02 98.21± 0.04 86.34± 0.07
MCstd 96.72± 0.02 78.15± 0.09 61.63± 0.15 89.04± 0.02 64.94± 0.11 43.85± 0.09 95.43± 0.04 94.11± 0.12 75.09± 0.13
MCstd+mean 97.42± 0.02 84.18± 0.09 68.33± 0.16 90.40± 0.03 72.63± 0.07 52.38± 0.07 98.43± 0.03 98.28± 0.04 86.86± 0.09
Estd 96.87± 0.02 77.86± 0.11 61.48± 0.07 88.97± 0.02 64.05± 0.12 43.53± 0.13 97.98± 0.03 97.69± 0.04 84.29± 0.12
Estd+mean 97.62± 0.02 84.87± 0.14 68.88± 0.09 90.75± 0.03 73.15± 0.06 53.09± 0.09 98.61± 0.02 98.49± 0.03 88.00± 0.08
MCstd+mean+Estd+mean 97.69± 0.02 85.30± 0.11 69.60± 0.13 91.15± 0.03 73.85± 0.05 54.12± 0.09 98.61± 0.01 98.49± 0.02 87.95± 0.10
MD 95.78± 0.05 78.64± 0.08 60.36± 0.14 86.23± 0.05 67.37± 0.08 44.22± 0.11 98.23± 0.03 98.07± 0.03 85.97± 0.09
GS||·||2 94.76± 0.03 74.86± 0.10 58.05± 0.13 84.90± 0.02 61.49± 0.08 38.77± 0.04 97.30± 0.05 96.82± 0.10 81.11± 0.14
GS||·||1,2 95.03± 0.03 76.04± 0.10 59.83± 0.10 86.21± 0.04 63.32± 0.13 41.36± 0.09 97.65± 0.04 97.21± 0.07 83.27± 0.09
GSfull 95.80± 0.04 78.57± 0.11 62.50± 0.11 86.94± 0.04 66.96± 0.06 44.90± 0.09 98.04± 0.02 97.81± 0.04 85.28± 0.07

GSfull+ỹ 96.51± 0.018 81.20± 0.09 65.24± 0.16 87.54± 0.04 69.05± 0.07 47.67± 0.09 98.57± 0.03 98.47± 0.04 87.83± 0.08
GSfull+MCstd 97.65± 0.01 85.12± 0.06 70.30± 0.08 90.76± 0.02 72.50± 0.08 52.71± 0.07 98.35± 0.04 98.16± 0.04 86.48± 0.11
GSfull+Estd 97.85± 0.02 85.90± 0.15 71.22± 0.07 91.27± 0.03 73.44± 0.06 54.17± 0.06 98.64± 0.02 98.49± 0.03 88.34± 0.10
GSfull+MD 96.46± 0.04 81.00± 0.16 65.08± 0.14 87.51± 0.02 68.98± 0.08 47.63± 0.10 98.53± 0.03 98.42± 0.04 87.69± 0.06

MCstd+Estd+MD 97.66± 0.02 85.13± 0.12 69.38± 0.11 91.14± 0.02 73.82± 0.05 54.07± 0.08 98.56± 0.03 98.45± 0.03 87.78± 0.11
GSfull+MCstd+Estd+MD 97.95± 0.02 86.69± 0.09 72.26± 0.08 91.65± 0.03 74.88± 0.07 56.14± 0.11 98.74± 0.02 98.62± 0.01 88.80± 0.07

Table 13. Meta classification (AuROC and AP) and meta regression (R2) performance of baseline methods ,
variants of gradient metrics and combinations of output- and gradient-based metrics for different object detection architectures

(mean± std).
Pascal VOC COCO KITTI

AuROC AP R2 AuROC AP R2 AuROC AP R2

Faster R-CNN

Score 89.77± 0.05 67.71± 0.03 39.94± 0.02 83.82± 0.03 64.14± 0.03 40.50± 0.01 96.53± 0.05 93.29± 0.02 72.29± 0.02
MC 89.99± 0.06 44.22± 0.26 23.70± 0.17 85.80± 0.03 40.48± 0.12 23.56± 0.09 93.39± 0.07 67.82± 0.24 40.09± 0.17
MD 94.43± 0.02 71.18± 0.06 47.92± 0.09 91.31± 0.02 64.73± 0.05 44.41± 0.04 98.86± 0.03 94.31± 0.05 79.92± 0.04
GS||·||2 91.04± 0.07 61.66± 0.15 44.88± 0.05 89.80± 0.03 61.16± 0.06 44.93± 0.04 98.75± 0.02 93.01± 0.05 81.54± 0.05
GS||·||1,2 94.91± 0.04 67.73± 0.10 56.70± 0.06 90.64± 0.03 62.53± 0.07 48.27± 0.03 98.97± 0.03 93.89± 0.07 84.04± 0.04
GSfull 95.88± 0.05 68.74± 0.13 59.40± 0.03 91.38± 0.03 63.31± 0.07 50.44± 0.04 99.20± 0.01 94.60± 0.07 86.31± 0.07

GSfull+MC 96.59± 0.03 71.31± 0.08 60.74± 0.07 92.09± 0.02 64.59± 0.06 51.09± 0.04 99.34± 0.02 95.24± 0.05 86.85± 0.04
GSfull+MD 96.77± 0.05 73.60± 0.07 63.64± 0.08 92.30± 0.02 65.67± 0.05 52.30± 0.04 99.37± 0.02 95.38± 0.05 87.46± 0.05
GSfull+MC+MD 96.72± 0.04 73.51± 0.10 63.02± 0.03 92.30± 0.01 65.77± 0.06 52.21± 0.04 99.35± 0.02 95.37± 0.03 86.99± 0.07

RetinaNet

Score 87.53± 0.03 66.30± 0.05 40.43± 0.01 84.95± 0.04 68.58± 0.01 39.88± 0.02 95.91± 0.02 89.93± 0.02 73.44± 0.02
MC 72.90± 0.08 27.39± 0.11 14.17± 0.12 76.96± 0.04 43.54± 0.06 19.46± 0.06 88.13± 0.06 71.19± 0.10 50.51± 0.12
MD 89.57± 0.04 68.43± 0.08 50.27± 0.10 85.09± 0.01 68.32± 0.06 42.45± 0.12 96.19± 0.03 90.13± 0.04 77.53± 0.08
GS||·||2 87.86± 0.04 64.35± 0.06 46.19± 0.05 81.62± 0.04 63.95± 0.03 38.01± 0.04 95.93± 0.03 90.03± 0.05 79.17± 0.04
GS||·||1,2 88.77± 0.06 65.40± 0.05 49.64± 0.06 83.53± 0.05 65.88± 0.07 41.96± 0.05 96.47± 0.04 90.50± 0.03 81.35± 0.05
GSfull 91.58± 0.04 68.32± 0.06 57.23± 0.07 85.59± 0.02 67.93± 0.04 47.74± 0.06 97.26± 0.03 91.51± 0.07 84.47± 0.04
GSfull+MC 92.54± 0.03 70.65± 0.06 61.73± 0.04 86.87± 0.03 69.42± 0.03 50.63± 0.07 97.52± 0.02 91.98± 0.06 85.08± 0.04
GSfull+MD 92.99± 0.03 72.30± 0.08 64.32± 0.07 87.15± 0.05 70.16± 0.07 51.07± 0.09 97.61± 0.02 92.26± 0.05 85.73± 0.09
GSfull+MC+MD 92.95± 0.03 72.33± 0.07 63.44± 0.06 87.20± 0.04 70.21± 0.03 51.38± 0.09 97.63± 0.01 92.30± 0.03 85.64± 0.08

Cascade R-CNN

Score 95.70± 0.04 79.62± 0.10 57.90± 0.09 94.11± 0.01 81.36± 0.02 56.32± 0.02 98.67± 0.02 95.81± 0.04 83.31± 0.03
MD 96.32± 0.05 82.11± 0.12 63.62± 0.12 94.12± 0.03 81.60± 0.05 58.84± 0.04 99.18± 0.01 96.60± 0.05 86.22± 0.08
GS||·||2 96.46± 0.05 76.94± 0.19 61.56± 0.12 93.30± 0.02 76.40± 0.06 54.13± 0.06 99.19± 0.01 95.83± 0.06 85.80± 0.06
GS||·||1,2 96.54± 0.06 78.19± 0.22 62.82± 0.15 93.63± 0.02 77.95± 0.06 56.24± 0.05 99.23± 0.01 96.07± 0.05 86.33± 0.06
GSfull 96.66± 0.05 78.97± 0.19 63.94± 0.13 93.97± 0.02 79.17± 0.09 57.86± 0.05 99.34± 0.01 96.48± 0.04 87.39± 0.08
GSfull+MD 97.24± 0.05 84.11± 0.13 69.78± 0.13 94.78± 0.02 82.53± 0.05 62.13± 0.05 99.48± 0.01 97.27± 0.04 89.59± 0.04

with ỹ, we see consistently better results on ỹ, even though
MD contains ỹ as co-variables. We attribute this finding
to overfitting of the gradient boosting classifier and regres-
sion on MD. This suggests that the information in MD is

mostly redundant with the network output features. Also,
for combinations of one output-based uncertainty source
(i.e. one of MC, E and MD) we gain strong boosts, espe-
cially in meta regression (R2). Note, that GSfull+Estd is

TP FP

0.0

0.2

0.4

0.6

0.8

1.0

co
n

fid
en

ce

TP FP TP FP

Figure 8. Confidence violin plots divided into TP and FP for Score
(left), GSfull (center) and GSfull+MC+E+MD (right). Model:
YOLOv3, dataset: Pascal VOC evaluation split.

almost always the second-best model, even out-performing
the purely output-based model MCstd+Estd+MD. We show
meta classification and meta regression performance of the
sampling-based epistemic uncertainty methods MC and E
when we include sampling averages of all features in ad-
dition to standard deviations which also leads to significant
boosts. Finally, we show an additional subset of GSfull con-
sisting of one- and two-norms ({|| · ||1, || · ||2}) of all gradi-
ents which we abbreviate by GS||·||1,2 . We notice significant
gain of the latter to GS||·||2 , which shows that the one-norms
|| · ||1 contains important predictive information. Moreover,
GSfull is still significantly stronger than GS||·||1,2 , showing
that the other uncertainty features in eq. (3) lead to large per-
formance boosts. Note that in almost all cases, combining
MC dropout and deep ensemble features shows improve-
ment over the single models even though both are epistemic
(model) uncertainty. The two methods, therefore, do not
contain the exact same information but still complement
each other to some degree and are rather different approxi-
mations of epistemic uncertainty

For further illustration of our method, table 13 shows ad-
ditional meta classification and meta regression results for
the architectures from table 4. We find similar tendencies
for the purely norm-based gradient model GS||·||1,2 and see
a significant degree of non-redundancy between gradient-
based uncertainty and output-based uncertainty quantifica-
tion methods. Note in particular, that MC stays roughly on
par with the score baseline in terms of AuROC . We see sig-
nificantly worse performance in terms of AP and meta re-
gression (R2). We attribute this to the anchor-based dropout
sampling method which was also employed for the present
architectures (in the case of Faster R-CNN, the aggregation
approach is proposal-based).

Figure 8 shows the confidence violin plots of the score
(left), GSfull (center) and GSfull+MC+E+MD (right) condi-
tioned on TP and FP predictions. The violin widths are nor-
malized for increased width contrast. The score TP-violin
shows especially large density at low confidences whereas
the TP-violins of GSfull and GSfull+MC+E+MD are less
concentrated around the confidence τ̂ = 0. Instead, they

have mass shifted towards the medium confidence range
(“neck”).

F.2. Calibration of meta classifiers

For sake of completeness, we list in table 14 the calibra-
tion metrics ECE , MCE and ACE defined in appendix A
for score and meta classifiers for all object detectors on all
three datasets investigated in section 5. All calibration met-
rics are in line with the results from section 5 with meta
classifiers being always better calibrated than the score by
at least half an order of magnitude in any calibration met-
ric. See also fig. 9 for the additional reliability diagrams
for MC, E and MC+E+MDGSfull which extends fig. 3. The
ECE metric is comparatively small for all meta classifiers
and, therefore, insensitive and harder to interpret than MCE
and ACE . As was argued in [39], the former is also less
informative as bin-wise accuracy is weighted with the bin
counts. In table 14 we can see a weakly increasing trend of
calibration errors in the meta classifiers due to overfitting on
the increasing number of co-variables. All meta classifiers
are well-calibrated across the board.

F.3. Meta regression scatter plots

We underline the meta regression results obtained in sec-
tion 5 and appendix F by showing samples of predicted IoU
values over their true IoU in fig. 10. The samples are the
results of one cross-validation split from table 3 and we in-
dicate the diagonal of optimal regression with a dashed line
in each panel. Note that the x-axis shows the true IoU val-
ues and we indicate the uncertainty quantification method
below each panel plot at a label. The y-axis shows the pre-
dicted IoU for each method. We find a large cluster for the
score with low score but medium to high true IoU (from 0.1
to 0.8), the right-most part of which (predicted IoU ≥ 0.5)
are false negative predictions. In this regard, we refer again
to fig. 6 where FNs such as these become very apparent.
Moreover, the score indicates very little correlation with the
true IoU for true IoU ≥ 0.6 where there are numerous
samples with a score between 0.4 and 0.6.

In contrast, the meta regression models show striking
amounts of FPs (true IoU equal to 0 and, e.g., prediction
ι ≥ 0.3). This phenomenon seems especially apparent
for Monte Carlo dropout uncertainty. The meta regression
models MD, GSfull and GSfull+MC+E+MD show fits that
are comparatively close to the optimal diagonal which is
in line with the determined regression performance R2 be-
tween 0.81 and 0.89 in table 3.

0.0 0.5 1.0
Score

0.0

0.5

1.0

C
on

d
.

P
re

ci
si

on

ECE = 0.040
ACE = 0.114

0.0 0.5 1.0
MC

ECE = 0.004± 0.000
ACE = 0.003± 0.000

0.0 0.5 1.0
E

ECE = 0.014± 0.002
ACE = 0.010± 0.002

0.0 0.5 1.0
MD

ECE = 0.003± 0.000
ACE = 0.012± 0.001

0.0 0.5 1.0
GSfull

ECE = 0.005± 0.000
ACE = 0.020± 0.003

0.0 0.5 1.0
MC+E+MD+GSfull

ECE = 0.005± 0.000
ACE = 0.024± 0.003

Confidence

Figure 9. Reliability diagrams for the Score and meta classifiers based on different epistemic uncertainty features of the YOLOv3 architec-
ture on the KITTI dataset. See table 14 for calibration errors of all meta classification models investigated in section 5.

Table 14. Expected (ECE , [38]), maximum (MCE , [38]) and average (ACE , [39]) calibration errors per confidence model over 10-fold
cv (mean± std).

Pascal VOC COCO KITTI

YOLOv3 ECE MCE ACE ECE MCE ACE ECE MCE ACE

Score 0.040 0.252 0.114 0.0327 0.050 0.034 0.068 0.348 0.227
Entropy 0.002± 0.001 0.021± 0.010 0.007± 0.003 0.002± 0.001 0.028± 0.020 0.007± 0.003 0.005± 0.001 0.033± 0.010 0.011± 0.003
Energy Score 0.001± 0.001 0.015± 0.007 0.005± 0.002 0.002± 0.001 0.021± 0.003 0.008± 0.001 0.006± 0.002 0.034± 0.010 0.013± 0.005
Full Softmax 0.003± 0.000 0.028± 0.006 0.010± 0.002 0.003± 0.001 0.018± 0.003 0.007± 0.001 0.008± 0.001 0.048± 0.010 0.018± 0.002
MC 0.004± 0.000 0.033± 0.006 0.014± 0.002 0.004± 0.001 0.025± 0.003 0.010± 0.001 0.011± 0.001 0.036± 0.010 0.013± 0.002
E 0.003± 0.000 0.025± 0.005 0.010± 0.002 0.004± 0.001 0.022± 0.003 0.010± 0.001 0.013± 0.001 0.062± 0.010 0.028± 0.004
MD 0.003± 0.000 0.040± 0.009 0.012± 0.001 0.005± 0.001 0.033± 0.005 0.014± 0.001 0.012± 0.001 0.074± 0.020 0.028± 0.005
GS||·||2 0.003± 0.000 0.036± 0.007 0.014± 0.001 0.002± 0.000 0.013± 0.004 0.005± 0.001 0.008± 0.001 0.054± 0.010 0.022± 0.003
GSfull 0.005± 0.000 0.055± 0.002 0.021± 0.003 0.005± 0.001 0.039± 0.003 0.015± 0.001 0.012± 0.001 0.078± 0.020 0.034± 0.006

MC+E+MD 0.005± 0.001 0.049± 0.010 0.020± 0.003 0.005± 0.000 0.031± 0.006 0.014± 0.001 0.014± 0.001 0.076± 0.010 0.034± 0.005
MC+E+MD+GSfull 0.005± 0.000 0.061± 0.010 0.024± 0.003 0.006± 0.000 0.042± 0.004 0.018± 0.001 0.015± 0.001 0.106± 0.020 0.043± 0.006

Faster R-CNN

Score 0.050 0.427 0.232 0.075 0.212 0.138 0.036 0.283 0.114
MD 0.003± 0.000 0.039± 0.007 0.013± 0.002 0.004± 0.000 0.020± 0.003 0.009± 0.001 0.009± 0.001 0.079± 0.020 0.029± 0.004
GSfull 0.004± 0.000 0.027± 0.007 0.011± 0.001 0.004± 0.001 0.024± 0.003 0.009± 0.001 0.010± 0.001 0.084± 0.020 0.035± 0.004
MD+GSfull 0.005± 0.000 0.044± 0.007 0.018± 0.002 0.006± 0.001 0.029± 0.006 0.012± 0.001 0.011± 0.001 0.088± 0.010 0.037± 0.004

RetinaNet

Score 0.068 0.212 0.123 0.089 0.192 0.106 0.027 0.097 0.043
MD 0.003± 0.000 0.031± 0.008 0.011± 0.002 0.005± 0.001 0.022± 0.004 0.009± 0.001 0.003± 0.000 0.044± 0.006 0.016± 0.002
GSfull 0.003± 0.000 0.044± 0.009 0.014± 0.001 0.005± 0.000 0.031± 0.006 0.012± 0.001 0.005± 0.001 0.060± 0.010 0.022± 0.004
MD+GSfull 0.005± 0.000 0.064± 0.008 0.024± 0.002 0.007± 0.001 0.032± 0.004 0.015± 0.001 0.006± 0.000 0.070± 0.010 0.028± 0.003

Cascade R-CNN

Score 0.020 0.219 0.090 0.029 0.082 0.042 0.013 0.188 0.078
MD 0.003± 0.000 0.021± 0.006 0.007± 0.002 0.003± 0.000 0.019± 0.007 0.006± 0.001 0.002± 0.000 0.038± 0.010 0.016± 0.005
GSfull 0.005± 0.000 0.032± 0.010 0.012± 0.002 0.003± 0.000 0.017± 0.003 0.007± 0.001 0.003± 0.000 0.052± 0.010 0.020± 0.004
MD+GSfull 0.005± 0.000 0.034± 0.008 0.014± 0.002 0.004± 0.000 0.025± 0.004 0.010± 0.001 0.003± 0.000 0.046± 0.009 0.019± 0.003

Figure 10. Scatter plots for samples of Score and meta regression based on MC dropout, gradient features G and the combination model
G+MD+MC. We draw the optimal diagonal for reference. Model: YOLOv3, dataset: KITTI evaluation split.

