
A. Details on Dataset Creation and the Injection
of Label Errors

Original Annotation Smoothed Annotation

Figure 4. Two annotations, before and after we applied smoothing.
Note that, we do not smooth every class. Smoothing is applied
onto the classes of pedestrians, poles, vegetation and vehicles.
Additionally, we remove road lines from the annotation.

CARLA. We create the dataset by randomly selecting a
spawn point for the ego vehicle and recording in the first
step a segmentation mask of the empty scene. We then
randomly spawn objects around the ego vehicle and record
an input image as well as another segmentation mask of the
scene, while all objects including the ego vehicle are static.
The latter pair of image and ground truth serve as input
image and unperturbed / clean reference ground truth for
evaluation. Thereafter, we copy the connected component
of the clean annotation mask into the first one and randomly
select components to omit in order to induce label errors.
When recording the same scene multiple times in CARLA,
the ground truth typically varies at boundaries of connected
components due to rendering effects. Our procedure of
ground truth generation avoids this effect.

The CARLA simulator’s semantic segmentation sensor
provides very precised annotated segmentation masks. To
emulate human annotated masks and to make our synthetic
dataset more realistic, we smooth these masks in order to
reduce the degree of detailedness. We proceed class by class
and consider the classes of Pedestrians, Poles, Vegetation,
and Vehicles (in arbitrary order). More precisely, our smooth-
ing process proceeds as follows: For a given street scene, we
first create binary maps for each class where every pixel of
the class under consideration for smoothing obtains some
value i ∈ N and we associate 0 to every other pixel. The
value i enables us to control how much an object is smoothed.
For our smoothing we set i = 10. We then apply a Gaus-
sian smoothing kernel onto the binary masks and use these
smoothed binary masks as index map to overwrite the val-
ues of the corresponding pixels in the original segmentation
mask with the currently smoothed class value. To avoid that
we override values of pixels that belong to a component that

is in fact in front (in terms of visual depth) of a component
of the smoothed class, we use depth information provided by
CARLA to determine during smoothing for each pixel which
class is in front. After we finished this smoothing process we
fill the windows of vehicles in the scene as CARLA ignores
them in the labeling process. Lastly, we remove the road
lines and overwrite them with the class road. The result of
this process can be seen in fig. 4.

Cityscapes. Due to the availability of polygonal annota-
tions and the fact that the labeling style is hierarchical (ob-
jects are mostly labeled on top of the background compo-
nents), we can drop polygons according to the procedure
mentioned in eq. (3). In this way, we obtain a perturbed
ground truth by dropping polygons and then generating the
pixel-wise segmentation masks out of the JSON files. Al-
though the labeling style is hierarchical, it is possible that the
removal of a polygon in the annotation leads to an unlabeled
region in the resulting perturbed mask. As it turned out in
section 5, this is a realistic error and therefore we do not
ignore unlabeled components in our evaluation but consider
them as a class in the dataset.

B. A Class-wise Breakdown of Results for In-
duced Label Errors.

In this section, we present the class-wise results for
Cityscapes in experiment 1 with pertubation rate p̂ = 0.5
using the sota weights for Nvidia’s multiscale attention net
(appendix B) and for the Deeplab net (appendix B). Ignoring
the class Bus, for the attention net we obtained the best F1
score for the class Person with 74.88% which also contains
the most label errors. The lowest F1 scores occur for the
classes Traffic Light and Traffic Sign. From a visual inspec-
tion of predicted masks, it seems that the DNN relies more
on the geometry of these objects, while paying less atten-
tion to their textures. Similarly, for the Deeplab architecture
the class Person achieves the second highest F1 score with
76.64%. Here, the best class is Rider with 80.39% which
has a F1 score of only 58.99% with Nvidia’s net. The lowest
scores are again given for class Traffic Light and class Traffic
Sign.

C. Class-wise Breakdown of Found Label Er-
rors in Frequently used Datasets

This section is an extension to the discussion of sec-
tion 5.2. Here we provide additional details for each dataset
we studied and present results for selected classes. In ap-
pendix D we present for each dataset a collection of label
errors found in the respective datasets.

Cityscapes. In table 8 we have given the class-wise results
for Cityscapes and fig. 7 presents example errors we found.

11



(m)IoU TP FN FP Prec Rec F1

Bicycle 84.26 81 44 26 75.70 64.80 69.83
Bus 95.48 1 0 1 50.00 100.00 66.67
Car 96.86 100 61 56 64.10 62.11 63.09
Motorcycle 78.24 8 6 0 100.00 57.14 72.73
Person 87.91 161 76 32 83.42 67.93 74.88
Rider 75.47 41 46 11 78.85 47.13 58.99
Traffic Light 79.88 38 1 63 37.62 97.44 54.29
Traffic Sign 87.64 55 17 179 23.50 76.39 35.05
Truck 92.64 2 8 3 35.59 20.00 26.67

Overall 86.82 487 259 371 56.76 65.28 60.72

Table 6. Class-wise results for Cityscapes using the Nvidia’s Multi-
scale Attention net.

(m)IoU TP FN FP Prec Rec F1

Bicycle 79.00 76 49 24 76.00 60.80 67.56
Bus 94.00 1 0 0 100.00 100.00 100.00
Car 96.50 102 59 29 77.86 63.35 69.86
Motorcycle 73.80 7 7 1 87.50 50.00 63.64
Person 88.20 159 78 19 89.33 67.09 76.63
Rider 75.40 43 44 2 95.56 49.43 80.39
Traffic Light 79.00 33 6 44 62.86 84.62 56.90
Traffic Sign 82.80 56 16 206 21.37 77.78 33.53
Truck 78.80 4 6 0 100.00 40.00 57.14

Overall 81.40 481 265 325 59.68 64.48 61.98

Table 7. Class-wise results for Cityscapes using the Deeplab net.

Figure 5. The connected component shown here is originally la-
beled as void. Our method predicts a label error here which is likely
true. However, since we cannot confirm this without any doubt we
validated it as false positive.

In the training set we have found 106 label errors by review-
ing 200 predictions. For the classes of person, rider/bicycle
and vehicles altogether we found 90 true positives, 60 false
positive, obtaining a precision of 60%. For traffic lights and
road signs we achieve a precision of 50% by finding 25 label
errors in 50 predictions. Apart from the class bus which only
consists of one prediction, we observe the highest precision
for the class rider with 88.89% while, at the same time the
IoU is the lowest of all predicted classes with 75.47%. This
indicates that our approach does not necessarily depend on a
high IoU. It is also possible that the computed IoU for this
class is dragged down by label errors in this class. The most
errors we found for this class were caused by labeling a rider

as a person.
We observed the same for the validation set. Combining

the results of the classes of person, rider/bicycle and vehicles
we have a precision of 55.33% and of 46.00% for classes of
traffic lights and road signs. The result are slightly worse,
which is to be expected as the validation set only consists
of 500 images while the training set includes almost 3000
images.

Due to our conservative validation approach, for the class
traffic light we validated several predictions as false positive
even though they could be viewed as true positives; see fig. 5
for examples.

Validating them as true positive would result in additional
15 true positives and a precision of 93% for the class of
traffic lights and of 65% in total. Also, in fig. 6 we present a
case that occurred several times and is debatable whether it
is a false or true positives. However, following the official
Cityscapes labeling policy and to avoid any confusion, we
consider them to be false positives.

Figure 6. The DNN has correctly found a car component here.
However, it is not a foreground object and therefore labeled as void
in the ground truth. According to the labeling policy this is a false
positive.

Training set Validation set
Class (m)IoU TP FP Prec TP FP Prec

Bicycle 84.26 16 8 66.67 16 8 66.67
Bus 95.48 1 0 100.00 2 3 40.00
Car 96.86 13 36 26.53 30 32 48.39
Motorcycle 78.24 2 1 66.67 0 0 NaN
Person 87.91 34 17 66.67 35 13 72.91
Rider 75.47 16 2 88.89 7 2 77.78
Traffic sign 79.88 10 18 35.71 12 17 41.38
Traffic light 87.64 13 9 59.09 13 8 61.90
Truck 92.64 1 3 25.00 0 2 00.00

Overall 86.82 106 94 53.00 115 85 57.50

Table 8. Classwise results for the train (left) and validation (right)
sets of Cityscapes.

PascalVOC. For PascalVOC, COCO-Stuff, and ADE20K
we presented a selection of the most informative classes

12



PascalVOC COCO-Stuff ADE20K
Class (m)IoU TP FP Prec Class (m)IoU TP FP Prec Class (m)IoU TP FP Prec

Bicycle 78.78 0 5 00.00 Building-other 30.81 16 7 69.57 Building 83.89 0 17 00.00
Boat 66.76 4 3 57.14 Ceiling-other 93.76 5 2 71.42 Cabinet 65.40 4 2 66.67
Bottle 81.18 5 6 45.45 Desk-stuff 66.83 4 0 100.00 Chair 57.72 3 3 50.00
Car 83.64 8 8 50.00 Grass 90.81 11 6 64.71 Coffee 64.15 6 0 100.00
Cat 89.21 1 10 09.09 Pavement 26.77 3 3 50.00 Floor 80.32 28 5 84.85
Chair 51.97 17 11 60.71 Playingfield 44.87 9 0 100.00 Grass 59.71 1 5 16.67
Dining table 51.47 10 6 62.50 River 85.00 1 1 50.00 House 25.05 0 3 00.00
Dog 85.01 0 14 00.00 Road 90.70 2 2 50.00 Painting 73.64 1 4 20.00
Person 85.79 38 7 84.44 Sea 96.65 3 2 60.00 Sea 47.57 5 1 83.33
Potted plant 68.02 0 4 00.00 Sky-other 63.13 17 2 89.47 Ship 4.58 2 3 40.00
Sheep 79.61 2 3 40.00 Snow 97.21 6 2 75.00 Sky 92.79 6 3 66.67
Sofa 52.02 6 9 40.00 Table 00.00 0 6 00.00 Table 59.24 4 1 80.00
Train 82.94 1 5 16.67 Tree 73.33 31 9 77.50 Tree 73.58 3 1 75.00
Tv monitor 68.67 0 5 00.00 Wall-concrete 58.59 9 11 45.00 Wall 75.24 7 12 36.84

Overall 78.03 95 105 47.50 Overall 28.20 134 66 67.00 Overall 43.12 110 90 55.00

Table 9. Classwise results for the validation set of PascalVOC, COCO-Stuff, and ADE20K.

in table 9. Examples errors are shown in fig. 8. At first
glance, one might expect that classes with low IoU are dif-
ficult for our label error detection. PascalVOC provides
several counter example for this. While for the class Person
we observe high IoU scores together with strong label er-
ror detection performance, considering the overall picture
there is a clear anti-correlation between label error detec-
tion performance and IoU for PascalVOC. Even with low
IoU scores, our method is still able to find label errors. For
example, the DNN exhibits a comparatively low IoU score
of 51.97% for the chair class but still our method found 17
label errors with a precision of 61%. We observe the same
for the class Dining table in which we found 10 label errors
with a precision of 63% and an IoU of 51.47%. Calculating
the Pearson correlation between the IoU and the precision
scores we obtain a low negative value of −0.27. Altogether,
the findings indicate that the low mIoU might be partially
caused by a poor label quality of the dataset.

COCO-Stuff. Selected class results are given in table 9
and some errors are presented in fig. 9. The best results are
achieved for the classes of Building-other, Grass, Playing-
field, Sky-other and Tree with precision scores significantly
above 50% and a representative amount of predictions. Over-
all, for this dataset we achieved the highest precision of 67%
in 200 prediction across 36 predicted classes. For this dataset
we also can observe the IoU and precision scores also seem
to be barley correlated. This observation is supported by a
low correlation score of 0.36.

ADE20K. In this dataset we found 104 label errors in
200 predictions across 58 classes. Table 9 shows results
for selected classes and fig. 10 some example errors. As
we already mentioned the class definitions of this dataset

are in part not sufficiently distinct. In addition, since we
were not able to find class descriptions for this dataset, we
inferred from the ground truth annotation which objects the
classes represent. This led to a significant amount of false
positives since we were oftentimes unable to assign TP with
appropriate confidence. This applies in particular to the class
“building”. In ADE20K, there also exists a class named
house which seems to accommodate buildings for human
habitation. For the DNN it is difficult to distinguish these
two classes, hence it predicts most of the buildings/houses
as buildings This leads to a high IoU for the class building,
a low IoU of 25.05 for the class house, and a precision of
0% for the building class. However, despite the mentioned
issues, the results for ADE20K are comparable to those
obtained for the other datasets. Also for this dataset we have
a low correlation score of 0.19.

D. Additional Examples of label Errors in Fre-
quently used Datasets

Below we present collages of examplary label errors we
found in the datasets discussed in the previous section. Each
collage contains 16 pairs of images where each pair represent
one label error. The right image represents a section of the
ground truth segmentation mask and the left image displays a
missed or flipped component. Figures 7 to 10 are collections
of label errors in Cityscapes, PascalVOC, COCO-Stuff and
ADE20K, respectively.

13



Figure 7. A collection of label errors present in Cityscapes. Left: prediction of our label error detection method; right: “ground truth”
annotation. Our method is able to find both, overlooked and flipped labels.

14



Figure 8. A collection of label errors present in PascalVOC. The visualization scheme follows the one of fig. 7.

15



Figure 9. A collection of label errors present in COCO-Stuff. The visualization scheme follows the one of fig. 7.

16



Figure 10. A collection of label errors present in ADE20K. The visualization scheme follows the one of fig. 7.

17


