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Figure 1: Wordcloud summarizing the distribution of fre-
quently occurring words in AVLectures.

The supplementary material is structured as follows: In
Sec. A we present details about the vocabulary of AVLec-
tures. Next, we analyze a failure case example of segmen-
tation in Sec. B. In Sec. C we provide details on segmenting
the lectures manually. Further, we discuss some more abla-
tion studies in Sec. D and training details in Sec. E. Next,
we provide additional qualitative results for both the text-
to-video retrieval as well as the lecture segmentation task in
section Sec. F. Finally, we report segmentation scores for
each of the 15 courses in Sec. G.

A. AVLectures Dataset: Additional Details

AVLectures has a vocabulary size of around 13,000
words with over 7.1M words in total. Fig. 1 shows the dis-
tribution of the most occurring words in the dataset. AVLec-
tures is currently dominated by STEM courses, primar-
ily Electrical Engineering & Computer Science, Physics,
and Mathematics, which is evident from the word cloud in
Fig. 1. In our dataset, we have a good mix of old and new
courses, as seen in Fig. 2, with the majority being recorded
in the last decade.
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Figure 2: Courses from AVLectures that are recorded over
the last 2 decades.
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Figure 3: Example of segmentation where the predicted
segments differ slightly from the ground truth segments.

B. Deep dive into the failure case

In this section, we provide more insights into a failure
case example of segmentation.

Consider Fig. 3, in which the predicted segments from
our model are slightly different from the ground truth seg-
ments. However, segmentation is a subjective task, and
there can be more than one valid segmentation for some
lectures. Our aim in audio-visual lecture segmentation is to
temporally segment a lecture into several smaller segments,



such that each segment represents a unique concept/sub-
topic. Consider a case in which a single concept can be
divided into two smaller concepts. In this case, two valid
segmentations are possible: (i) the single concept consid-
ered as one complete segment or (ii) the two smaller con-
cepts considered as two separate segments.

Now we compare the Ground Truth (GT) segmentation
with the segmentation predicted by our model for the lec-
ture Implicit differentiation of the Single Variable Calculus
course'. We will refer to the i** segment of Ground Truth
as GT; and that of the segment predicted by our model as
Pred; for the rest of this section. Also, let len(segment)
represent the total duration (or the length) of the segment.

GT, and Pred, are about the introduction to implicit
differentiation. However, Pred; is slightly longer as it in-
cludes the part where the professor greets the late-coming
students. However, this non-lecture segment is a part of
GT5 and the rest of it is similar to the Preds, which covers
the topic of the rational exponent rule. The ending bound-
ary of GT5 is approximately equal to that of Preds. Also,

len(GTy) + len(GTy) =~ len(Predy) + len(Preds)

GT3 discusses the calculation of the slope of the tan-
gent to a circle using the direct method and G'T using the
implicit method. However, Preds combines both the seg-
ments into one. The ending boundary of GT} is close to that
of Preds. Also,

len(GTs) + len(GTy) = len(Preds)

Next, GT5 is an example involving a fourth-order equation.
In the case of predicted segmentation, the example is di-
vided into two segments Pred, and Preds, which corre-
spond to the two steps involved in solving it. This is an
error made by our model as it breaks the two-step solution,
however, it is nice to observe that the split is still at a mean-
ingful location. The ending boundary of GT5 is approxi-
mately equal to that of Preds. Also,

len(GTs) ~ len(Predy) + len(Preds)

The last three segments of GT are about the derivatives of
inverse functions and a couple of examples. Among the
last three predicted segments, segment 6 and segment 7 are
about the derivatives of inverse functions and the problem
statement of the examples. The final predicted segment cov-
ers the solution to both the examples.

len(GTs) + len(GT7) + len(GTs)
~ len(Preds) + len(Predy;) + len(Preds)

Hence, even though the predicted segmentation is slightly
different from the GT segmentation, it is still a valid seg-
mentation.
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Figure 4: Segmentation of two lectures done manually by
two annotators.

Lecture Method NMI MOF IOU F1 BS@30

Green’s A-1 980 99.6 99.0 99.5 100.0
Theorem A-2  76.1 752 558 63.1 66.7
Ours 86.7 954 88.8 940 66.7

Parametric A-1  89.7 92.6 87.8 93.0 66.7
Equations A-2 814 775 63.1 742 50.0
Ours 86.6 84.8 763 84.1 66.7

Table 1: Inter-Annotator segmentation scores. Here, A-
1 stands for Annotator-1, A-2: Annotator-2, Ours: Our
model’s prediction.

C. Inter-annotator variation

To further analyze the subjective nature of the segmen-
tation task, we asked two annotators to independently seg-
ment a few lectures to check the agreement with the cor-
responding ground truth segmentation and among them-
selves. Fig. 4 shows two such results. In the first ex-
ample, Annotator-1 considered the topic and its example
to be the same segment, whereas Annotator-2 split them
into two separate segments. We can see that even though
the Annotator-2’s segmentation does not match with the
Ground Truth, it is still a valid segmentation. Also, our
model predicts segments that are closer to that of GT and
Annotator-1. In the second example, our model predicts
the first two segments in line with Annotator-2’s segments
while the rest of the segments are similar to that of GT and
Annotator-1’s segments. In Table 1, we provide quantitative
results of segmentation done by each of the annotators, as
well as the prediction from our model with respect to MIT
OCW’s ground truth.



Method Partition NMI + MOF 1 IOU 1 F11 BS@30 1

2 last 637 61.7 595 426 423

Ours  3"last 72.1 59.7  39.1 427 652
GT 79.8 803 692 769 587

2" Jast  58.6 589 541 405 27.0

Naive 3“last 669 512 33.8 393 389
GT 71.8 755 627 740 325

Table 2: Allowing TW-FINCH to estimate the number of
clusters.

D. Additional Ablation studies

1. What if the number of segments is unknown? It is not
trivial to guess the ideal number of segments for the unseen
lectures. In such cases, we let the TW-FINCH algorithm
decide the appropriate number of clusters. TW-FINCH pro-
duces a hierarchy of partitions where the number of clusters
reduces with successive partitions. We use the 2"- and the
3rlast partitions to estimate the number of segments auto-
matically and report performance in Table 2. We also report
scores for the Naive baseline on the above partitions as well.

In addition to the usual metrics we also compute the L1
distance between the ground-truth number of clusters and
the number of automatically estimated clusters for both the
partitions. The L1 distance between the last and 2"-last
partition is 8.554 and that of 3"-last is 4.614. The 3"-
last partition has a lower L1 score compared to the 2"-last
partition. This, along with the other metrics, indicates that
the number of clusters generated by the 3™-last partition is
closer to the ground-truth.

Language Model NMI 1 MOF 1+ IOU 1 F11 BS@30 1

Word2Vec 789 797 684 764 582
mpnet-v1 79.1 79.7 683 762 584
mpnet-v2 798 803 69.2 769  58.7

Table 3: Impact of different Language Models.

2. Using different language embedding models. In this
study, we experiment with three different text embeddings,

1. word2vec: We first preprocess the transcripts by re-
moving the most common stop words. Next, we ex-
tract the word embeddings from the GoogleNews pre-
trained word2vec model [3]. word2vec encodes each
word into to a 300-dimensional vector.

2. multi-ga-mpnet-base-dot-v1 (mpnet-vl in Ta-
ble 3): This is a sentence transformer BERT model
that uses the pre-trained MPNet [4] model and is
trained on 215M (question, answer) pairs from diverse

! Implicit differentiation lecture video

sources. This model encodes the transcripts into a 768-
dimensional vector.

3. all-mpnet-base-v2 (mpnet-v2 in Table 3): This
model uses the pre-trained MPNet [4] model and is
fine-tuned on a 1B sentence pairs dataset using a con-
trastive learning objective: given a sentence from the
sentence pairs, the model should predict which sen-
tence from a randomly sampled other sentences was
paired with it. This is the same model that was de-
scribed in the Main paper Sec. 4.1.

The results of all three models are reported in Table 3. Al-
though, the all-mpnet-base-v2 model performs slightly
better when compared to the other two text embedding mod-
els the scores are almost similar in all three variations. The
results show that there is no significant impact on the type
of text embeddings that are used to train the model.

Embed. dim. NMI1 MOF 1 IOU+ F11 BS@30+
512 793 797 683 761  59.7
1024 793 803 689 767  59.0
2048 798 804 694 771 596
4096 798 803 692 769 587

Table 4: Impact of different embedding dimension.

3. How does the model’s embedding dimension affect the
performance of segmentation? We train the model with
four different output embedding dimensions: 512, 1024,
2048 and 4096. It can be seen from Table 4 that the learned
features are robust and independent of the feature dimen-
sion and therefore has little impact on the overall perfor-
mance of the model on the segmentation task. Although
the embedding dimensions 2048 and 4096 perform slightly
better than the rest.

Feature modality
visual textual learned NMI 1+ MOF 1 10U 1 F1 T BS@30 1

1 v - X 53.1 58.6 382 462 375
2 - v X 485 551 335 410 343
3 v 4 X 53.1 589 386 465 379
4 v - v 639 668 482 557 449
5 - v 4 492 564 350 424 337
6 vV v 4 602 649 460 533 441

Table 5: Impact of different feature modalities on K-Means

4. Impact of different feature modalities on K-Means
and CTE [1] We show the segmentation results for K-
means and Continuous Temporal Embedding [1] (CTE) on
the features extracted using the pipeline (Sec. 4.1 Main Pa-
per) as well as on the learned embeddings from our joint
text-video model. The scores are shown in Table 5 and 6.



Feature modality
visual textual learned NMI T MOF 1 10U 1 F1 T BS@30 1

1 v - X 650 654 459 554 38.6
2 - 4 X 67.2 681 49.6 594 353
3 7 4 X 663 665 474 57.0 398
4 v - 4 67.1 672 482 57.6 41.0
5 - v v 647 657 454 548 35.6
6 vV v 4 67.2 673 48.1 573 415

Table 6: Impact of different feature modalities on CTE

For K-Means, the learned visual embeddings (row 4) and
the combination of learned visual and textual embeddings
(row 6) outperforms all other variations by a good mar-
gin. The results highlight the importance of training lecture-
aware representations using our joint text-video embedding
model. For CTE, even though all the scores are relatively
closer to each other, the one that uses text features (BERT
embeddings) (row 2) and a combination of learned visual
and textual embeddings (row 6) perform the best. Note that
using a combination of learned visual and textual embed-
dings results in the highest boundary score, highlighting the
importance of our learned representations in predicting bet-
ter boundaries.

5. Deeper analysis on Naive method performing well. As
discussed in the paper, one reason why the Naive method is
effective is due to an inherent bias of the instructor spending
almost equal amounts of time on different topics in certain
lectures. For example, consider a lecture on Multivariate
Calculus”’. Here each of the segment is approximately 16
minutes, thus giving an upper-hand to the naive method.
Upon further analysis, we observe that 73 of 350 lectures
(nearly 20 % of CwS) have GT segment boundaries within
3 minutes to the boundaries suggested by the Naive base-
line. We perform an ablation study by varying the number
of splits obtained by automatically clustering lectures with
TW-FINCH. The results indicate that splitting lectures at
the ground truth number of segments gives a better segmen-
tation performance than splitting it in any other way, as seen
in Table 2.

6. Boundary scores at various intervals. We also perform
an ablation study by computing Boundary Scores at various
values of K, and it’s plot is shown in Fig. 5. Typically, the
instructor spends at least 25-30 seconds (in answering stu-
dent’s questions, erasing the blackboard etc.) before switch-
ing to new a topic. This was the reason behind reporting the
scores for BS@30 in the paper. As expected, all methods
perform worse for lower values of K and as K approaches
15, the use of 10-15s clip sizes hurts performance.

7. Impact of lecture-transcript alignment strategies. We

2Multivariate Calculus - segment-1, segment-2, segment-3

Method NMI+ MOF+ IOU1 F11 BS@30+

NCE 70.6 71.5 56.3  66.3 43.2
Ours 79.8 80.3 69.2 769 58.7

Table 7: Segmentation performance when lecture-transcript
alignment is done using Noise Contrastive Estimation
(NCE) loss.
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Figure 5: Boundary scores at different values of K.

also compare our approach with a more popular approach
that uses Noise Contrastive Estimation (NCE) loss for align-
ing video-text pairs [2]. The results are reported in Table 7.
Our approach, which uses max-margin ranking loss outper-
forms the NCE loss perhaps due to the scale of the dataset
and the limited number of negative samples in the batch.
We were unable to train with larger batch sizes due to GPU
memory restrictions.

E. Training details

We train our joint text-video embedding model’s param-
eters with the max-margin ranking loss. We use a mini-
batch size of 32. Our model is trained on a 1080ti NVIDIA
GPU using Adam optimizer with a learning rate of 1e-4 and
a learning rate decay of 0.9. We use the same hyperparam-
eters for both the pre-training and fine-tuning.

F. Additional Qualitative Results: Retrieval
and Segmentation

This section shows additional qualitative results for the
text-to-video retrieval and the lecture segmentation task.
Fig. 6 shows some of the retrieved clips for different text
queries like graphs coloring, operating systems, etc. We
also tested a query erasing board to check the model’s
comprehension of non-conceptual keywords, as shown in
the last example of the figure. Although this query is not
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Figure 6: Text-to-video retrieval results on six queries. The figure shows the thumbnails of the top 3 retrieved lecture clips
from our model. Our model is able to retrieve relevant lecture clips according to the query.

Naive

Content Aware Detector
Text Tiling

LDA

K-Means

CTE

Vanilla TW-FINCH
Ours

GT

Impulse, Torque, and Angular Momentum
(Engineering Dynamics)

Conditional Expectation
(Introduction to probability)

Language
(Introduction to Psychology)

Naive

Content Aware Detector
Text Tiling

LDA

K-Means

CTE

Vanilla TW-FINCH
Ours

GT

Transfer of respiratory pathogens
(Physics of COVID-19 transmission)

System-level Interfaces
(Computation Structures)

Eigenvalues and Eigenvectors
(Learning Differential Equations)

Figure 7: Segmentation examples for six lectures from different courses with varying a number of segments.

present in the transcript, it still correctly retrieves the clips
in which the professor erases the blackboard. This demon-
strates the importance of pre-training on the CwoS dataset.

Fig. 7 shows more qualitative results from the lecture
segmentation task for lectures from different courses. Re-
gardless of the number of segments, our method yields
better segmentation length and boundaries when compared
with the other baselines.

G. Course-wise segmentation results

We report the top 5 segmentation scores for each of the
courses of the CwS dataset across all of its lectures in Ta-
ble 8. The mapping between the course ID and the course
name is shown in Table 9, along with other metadata like
the subject area, number of lectures, the average number of
segments, and the presentation mode. As seen in the table,
our method outperforms all of the other baselines for the
majority of the courses. However, there are a few courses



Course ID Method NMI MOF 10U F1 BS@SO‘ Course ID Method NMI MOF IOU F1 BS@30

Naive 72.1 639 49.0 61.6 22.2 Naive 66.3 785 66.5 77.1 394
CAD 632 559 334 427 290 CAD 513 66.7 47.7 586 353
mit001 LDA 70.0 60.7 43.7 552 28.1 mit002 LDA 572 734 58.0 69.5 373
V-TWF 76.5 68.2 525 62.2 455 V-TWF 67.8 774 64.7 7377 54.1
Ours 76.5 68.4 523 622 442 Ours 75.0 839 739 80.6 57.3
Naive 72.0 79.0 67.7 78.0 47.3 Naive 75.8 83.2 72.1 82.8 29.8
CAD 96.1 96.0 949 948 948 CAD 949 940 89.8 921 914
mit032 LDA 684 759 62.0 723 50.7 mit035 LDA 702 740 60.0 72.0 28.0
V-TWF 787 804 71.0 782 724 V-TWF 713 70.5 56.6 67.5 392
Ours 87.8 88.2 819 863 86.5 Ours 773 79.6 69.0 782 457
Naive 73.0 82.1 709 81.7 263 Naive 70.1 789 67.1 774 448
CAD 98.0 97.1 958 96.8 96.7 CAD 766 775 61.8 669 70.7
mit038 LDA 69.7 739 59.7 71.0 272 mit039 LDA 782 823 69.7 7177 622
V-TWF 746 77.6 642 73.6 427 V-TWF 76.8 81.2 692 775 57.6
Ours 76.7 789 669 758 458 Ours 834 86.0 77.6 83.2 75.6
Naive 73.0 729 58.7 714 26.2 Naive 744 76.0 63.1 74.5 30.0
CAD 943 89.5 843 86.5 90.1 CAD 577 562 357 448 26.0
mit049 LDA 78.8 79.7 664 76.6 47.4 mit057 LDA 68.6 67.1 51.3 62.8 30.6
V-TWF 822 79.8 66.6 743 629 V-TWF 712 69.3 537 652 328
Ours 844 84.7 738 814 632 Ours 763 76.0 628 724 41.2
Naive 74.5 77.2 65.0 76.2 34.6 Naive 73.9 724 587 714 241
CAD 57.8 57.1 356 456 242 CAD 683 575 374 474 421
mit075 LDA 74.0 738 59.8 70.2 40.3 mit088 LDA 769 722 582 68.6 46.0
V-TWF 722 715 56.7 67.6 354 V-TWF 792 71.7 572 66.1 542
Ours 734 748 60.6 71.3 352 Ours 803 748 61.8 71.0 56.0
Naive 65.7 81.6 70.2 80.4 43.8 Naive 67.0 66.6 51.1 63.5 21.7
CAD 630 753 612 689 58.7 CAD 52.0 579 33.6 421 275
mit097 LDA 65.8 79.6 662 74.8 56.5 mitl26 LDA 67.7 68.0 525 63.8 244
V-TWF 723 819 715 797 673 V-TWF 69.0 69.1 515 62.1 394
Ours 79.2 86.1 775 839 724 Ours 724 711 564 664 415
Naive 76.1 65.2 47.8 60.3 233 Naive 77.1 68.6 535 655 25.8
CAD 76.7 669 59.0 60.3 63.6 CAD 865 76.7 65.1 71.2 70.1
mitl51 LDA 77.0 669 504 61.0 274 mitl53 LDA 7777 68.6 50.7 61.1 39.8
V-TWF 852 794 64.0 732 504 V-TWF 853 775 642 720 654
Ours 95.1 93.6 84.7 88.0 84.6 Ours 90.8 84.7 74.6 799 78.8
Naive 81.2 85.6 764 855 31.6 Naive 71.8 755 62.7 74.0 325
CAD 958 91.7 887 91.0 925 Average CAD 729 733 594 659 570
mitl59 LDA 78.6 768 659 75.6 313 (across all LDA 70.0 724 57.6 682 38.8
V-TWF 81.8 80.9 69.7 77.6 61.2 |the 350 lectures) V-TWF 749 75.1 61.7 709 52.1
Ours 984 994 98.8 994 97.2 Ours 79.8 803 69.2 76.9 58.7

Table 8: Course-wise segmentation scores. Here, CAD stands for Content Aware Detector, V-TWF : Vanilla TW-FINCH
applied on the concatenation of visual and textual features. The last panel shows the average scores across all the 350
lectures of the CwS dataset.

(mit032, mit035, mit038, and mit049) for which the Con- vidual shorter video segments to form the complete lecture.
tent Aware Detector baseline has scores better than the other Since each of these shorter video segments was filmed inde-
methods. These are the courses where we combine the indi- pendently, the lighting/camera angle may have been slightly



Course ID Course Name Subject area # Lectures Avg. # segments Mode
mit001 Single Variable Calculus Mathematics 35 7.9 Blackboard
mit002 Multivariable Calculus Mathematics 35 32 Blackboard
mit032 Classical Mechanics Physics 38 4.3 Digital Board
mit035 Quantum Physics I Physics 24 4.8 Blackboard
mit038 Quantum Physics III Physics 24 4.2 Blackboard
mit039 Introduction to Special Relativity Physics 12 4.2 Digital Board
mit049 Introduction to Nuclear and Particle Physics Physics 11 6.1 Digital Board
mit057 Introduction to Psychology BCS 24 55 Blackboard
mit075 Principles of Microeconomics Economics 26 5.1 Blackboard
mit088 Computation Structures EECS 21 6.6 Slides
mit097 Mathematics for Computer Science EECS 35 32 Slides
mit126 Engineering Dynamics ME 27 53 Blackboard
mitl51 Physics of COVID-19 Transmission Biology 4 9.4 Digital Board
mitl153 Introduction to Probability EECS 26 9.3 Slides
mit159 Learn Differential Equations Mathematics 8 6.9 Blackboard

Table 9: Mapping between course IDs and course names along with additional metadata. Here, BCS stands for Brain and

Cognitive Sciences, EECS - Electrical Engineering and Computer Science, and ME - Mechanical Engineering.

different for each of these segments. This makes it easier for
the Content Aware Detector to predict accurate boundaries.
For the other courses, the Content Aware Detector scores
are considerably lower than most of the other baselines and
our model. All in all, our model outperforms all of the other
baselines on an average across all the lectures of the CwS
dataset easily, as shown in the last panel of Table 8.
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