Saliency Guided Experience Packing for Replay in Continual Learning

Appendix

Section A describes the steps of saliency map generation using Grad-CAM. Section B provides the dataset statistics used
in different experiments. Pseudo-code of the episodic memory update in EPR is given in Section C. List of hyperparameters
used for the baseline algorithms and our method is given in Section D. Additional results are provided in Section E.

A. Saliency Method : Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) [41] is a saliency method that uses gradients to determine
the impact of specific feature map activations on a given prediction. Since later layers in the convolutional neural network
capture high-level semantics [26], taking gradients of a model output with respect to the feature map activations from one
such layers identifies which high-level semantics are important for the model prediction. In our analysis, we select this layer
and refer to as rarget layer [15]. List of target layer for different experiments is given in Table A.1.

Table A.1. Target layer names in PyTorch package for saliencies generated by different network architectures in Grad-CAM for different
datasets.

Dataset Network Target Layer

Split CIFAR ResNetl8 (reduced) layer4.l.shortcut
Split minilmageNet ResNetl8 (reduced) layer4.l.shortcut
Split CUB ResNet18 net.layer4.1l.conv2

Let’s consider the target layer has M feature maps where each feature map, A™ € R**? is of width v and height v. Also
consider, for a given image (I € R"*H*C) belonging to class c, the pre-softmax score of the image classifier is y.. To
obtain the class-discriminative saliency map, Grad-CAM first takes derivative of y. with respect to each feature map A™.
These gradients are then global-average-pooled over u and v to obtain importance weight, ot for each feature map:

1 u v ayc
= — Al
= G 2o 2 (A1)

i=1 j=1

where A denotes location (4, j) in the feature map A™. Next, these weights are used for computing linear combination of

the feature map activations, which is then followed by ReL.U to obtain the localization map :
M

L&raa—canm = ReLU (Z o, A™) (A.2)

m=1

This map is of the same size (u x v) of A™. Finally, saliency map, I, € RWV>*#

to the input image resolution using bilinear interpolation.
Iy, = Upsample (L& ua—can) (A3)

is generated by upsampling L¢,, .._cam

B. Dataset Statistics

Table B.1. Statistics of the CIFAR-100, minilmageNet and CUB datasets used in task-incremental learning experiments.

Split CIFAR Split minilmageNet Split CUB
num. of tasks 20 20 20
input size (W x H x C) 32x32x3 84 x 84 x 3 224 x 224 x 3
num. of classes/task 5 5 10
num. of training samples/tasks 2,500 2,500 300

num. of test samples/tasks 500 500 290

C. Memory Update Algorithm

Algorithm 2 Procedure for saliency guided episodic memory update in EPR
procedure UPDATEMEMORY (Mg, M, fg, EPF, W))

1:

2 XAT: Procedure for saliency map generation; S, : stride; t*: task-ID

3 Initialize: I, < []; ¢ <= []: Xcord <= []: Yeora < []; Pprea < [] > Initialize for memory selection

4 for (I,k,c) ~ Mt do > Sample one example at a time without replacement from M

5: Ism < XBI(fo,1,c) > generate saliency map using Equation 1

6 Zcord, Yeord < average-pool(lsm, Wp, Ssm) > get corner coordinates of the most salient region in input,/

7 I, < I(Tcord : Teord + Wp, Yeord : Yeord + Whp) > get patch from Equation 4

8 Iz; + Zero-pad(Ilp, Tcord, Ycord)

9: pred < fo(I ,/,) > check model prediction after zero-padding
10: L, < [, Ip] > add patch
11: Ppred < [Ppred, pred) > add prediction
12: ¢ [c,] > add class label
13: Xcord < [Xcord, Icord} > add Zcord
14 Yeord < [ycomb yCm‘d] > add yeord
15: end for
16: (Ip, €, Xcord; Yeorq) < Select—patches(I,, ¢, Xcord, ¥ oopqs Ppred, EPF) > see section 6: memory patch selection

17 tF ek

18: By — (I, t* ¢)

19: Mg = Mg U{(BMmg,Xcord: Yeora) } > update episodic memory
20: return Mg

21: end procedure

D. List of Hyperparameters

List of hyperparameters used for both baseline methods and our approach is provided in Table D.1. EPF values used in
different experiments in our method are given in Table D.2.

Table D.1. Hyperparameters grid considered for the baselines and our approach. The best values are given in parentheses. Here, ‘Ir’
represents learning rate. In the table, we represent Split CIFAR as ‘cifar’, Split minilmageNet as ‘minImg’ and Split CUB as ‘cub’. EPF is
experience packing factor and M is the temporary ring buffer in EPR.

Methods Hyperparameters
Finetune {r:0.003, 0.01, 0.03 (cifar, minlmg, cub), 0.1, 0.3, 1.0
EWC Ir: 0.003, 0.01, 0.03 (cifar, minlmg, cub), 0.1, 0.3, 1.0
regularization, A : 0.1, 1, 10 (cifar, minImg, cub), 100, 1000
RRR Ir :0.003, 0.01 (cub), 0.03, 0.1, 0.3, 1.0
regularization : 10, 100 (cub), 1000
A-GEM I :0.003, 0.01, 0.03 (cifar, minlmg, cub), 0.1, 0.3, 1.0
MER {r :0.003, 0.01, 0.03 (cifar, minImg), 0.1 (cub), 0.3, 1.0

with in batch meta-learning rate, v : 0.01, 0.03, 0.1 (cifar, minImg, cub), 0.3, 1.0
current batch learning rate multiplier, s : 1, 2, 5 (cifar, minlmg, cub), 10

MEGA-I {r :0.003, 0.01, 0.03 (cifar, minlmg, cub), 0.1, 0.3, 1.0

sensitivity parameter, € : le=%, 1e=%, 0.001, 0.01 (cifar, minlmg, cub), 0.1

DER++ Ir :0.003, 0.01, 0.03 (minlmg, cub), 0.1 (cifar), 0.3, 1.0
regularization « : 0.1 (minImg), 0.2 (cifar), 0.5 (cub), 1.0
regularization, 3 : 0.5 (cifar, minImg, cub), 1.0

ASER {r :0.003, 0.01, 0.03 (cub), 0.1 (cifar, minlmg), 0.3, 1.0
K : 3 (cifar, minlmg, cub); N, : 100 (cifar, minilmg), 150 (cub), 250
ER-Reservoir {r :0.003, 0.01, 0.03 (cub), 0.1 (cifar, minImg), 0.3, 1.0
ER-RING {r :0.003, 0.01, 0.03 (cifar, minImg, cub), 0.1, 0.3, 1.0
HAL {r:0.003, 0.01, 0.03 (cifar, minlmg), 0.1, 0.3, 1.0

regularization, A : 0.01, 0.03, 0.1, 0.3 (minlmg), 1 (cifar), 3, 10

mean embedding strength, v : 0.01, 0.03, 0.1 (cifar, minImg), 0.3, 1, 3, 10
decay rate, /3 : 0.5 (cifar, minlmg)

gradient steps on anchors, k : 100 (cifar, minlmg)

Multitask {r :0.003, 0.01, 0.03 (cifar, minlmg, cub), 0.1, 0.3, 1.0

EPR (ours) Ir (task-incremental) : 0.01, 0.03 (cub), 0.05 (minlmg), 0.1 (cifar), 0.3, 1.0
Ir (class-incremental) : 0.01, 0.05 (cifar, minImg), 0.1
examples per class temporarily stored in Mr : v x EPF; v : 2(cub), 5 (cifar,minImg)
stride, Ssy, : 1 (cifar, minImg), 2, 3 (cub)

Table D.2. Experience Packing Factor (EPF) for different ns. used in our (a) task-incremental learning and (b) class-incremental learning
experiments. Input image width, W for CIFAR, minilmageNet and CUB dataset are 32, 84 and 224 respectively. For given n,., EPF and
W, corresponding memory patch sizes (W),) are also given in the table.

(a) (b)
Split CIFAR Split minilmageNet Split CUB CIFAR-100 minilmageNet
Nse EPF Wy EPF Wy EPF Wy (20 Tasks) (10 Tasks)
2 3 26 5 53 7 119 ‘]\/[E‘ Nse EPF Wp EPF Wp
1 2 22 3 48 4 112
0.75 1 27 2 51 3 112 2k 20 25 28 25 75
0.5 1 22 2 42 2 112 1k 10 13 28 13 73

E. Additional Results

Table E.1. Performance comparison of different experience replay methods for different memory sizes in task-incremental learning
setup. Number of memory slots per class, ns.={0.5,0.75} refers to memory size, |Mg|={42, 64} for CIFAR and minilmageNet, and
|Mg|={85, 128} for CUB. Average and standard deviations are computed over 5 runs for different random seeds.

Split CIFAR Split minilmageNet Split CUB
ns. Methods ACC (%) BWT ACC (%) BWT ACC (%) BWT
- Finetune 429 £2.07 -0.25+0.03 347+269 -026+£0.03 5574222 -0.13+0.03

MEGA-I 489 +1.68 -0.21 +£0.01 43.8+1.58 -0.14+0.01 61.5+2.08 -0.08+0.01
0.75 DER++ 500+ 1.81 -0.19+£0.02 4724+1.54 -0.124+0.01 648 £ 1.61 -0.06+0.01
ER-RING 504 +£085 -021+£0.02 449 +149 -0.14£0.02 640+£129 -0.05+0.01
EPR (Ours) 56.8 +1.59 -0.12 +0.02 51.1+1.47 -0.06 + 0.01 70.7 +0.72 - 0.03 £ 0.01

MEGA-I 43.7+126 -0.26 £0.02 39.6 £235 -0.18£0.02 57.7+£0.62 -0.11 £0.01
0.5 DER++ 475+1.58 -0.21 £0.01 45.6+£0.56 -0.13+0.01 625+ 145 -0.08+0.01
ER-RING 44.6 £0.84 -0.27 £0.01 39.1+£1.38 -0.20+£0.02 59.2+£097 -0.10+£0.01
EPR (Ours) 55.6 +£0.54 -0.13 £ 0.02 49.2 +1.20 -0.07 £ 0.01 70.3 +£0.91 -0.03 £ 0.01

