
Saliency Guided Experience Packing for Replay in Continual Learning

Appendix
Section A describes the steps of saliency map generation using Grad-CAM. Section B provides the dataset statistics used

in different experiments. Pseudo-code of the episodic memory update in EPR is given in Section C. List of hyperparameters
used for the baseline algorithms and our method is given in Section D. Additional results are provided in Section E.

A. Saliency Method : Grad-CAM
Gradient-weighted Class Activation Mapping (Grad-CAM) [41] is a saliency method that uses gradients to determine

the impact of specific feature map activations on a given prediction. Since later layers in the convolutional neural network
capture high-level semantics [26], taking gradients of a model output with respect to the feature map activations from one
such layers identifies which high-level semantics are important for the model prediction. In our analysis, we select this layer
and refer to as target layer [15]. List of target layer for different experiments is given in Table A.1.

Table A.1. Target layer names in PyTorch package for saliencies generated by different network architectures in Grad-CAM for different
datasets.

Dataset Network Target Layer

Split CIFAR ResNet18 (reduced) layer4.1.shortcut

Split miniImageNet ResNet18 (reduced) layer4.1.shortcut

Split CUB ResNet18 net.layer4.1.conv2

Let’s consider the target layer has M feature maps where each feature map, Am ∈ Ru×v is of width u and height v. Also
consider, for a given image (I ∈ RW×H×C) belonging to class c, the pre-softmax score of the image classifier is yc. To
obtain the class-discriminative saliency map, Grad-CAM first takes derivative of yc with respect to each feature map Am.
These gradients are then global-average-pooled over u and v to obtain importance weight, αc

m for each feature map:

αc
m =

1

uv

u∑

i=1

v∑

j=1

∂yc
∂Am

ij

, (A.1)

where Am
ij denotes location (i, j) in the feature map Am. Next, these weights are used for computing linear combination of

the feature map activations, which is then followed by ReLU to obtain the localization map :

Lc
Grad−CAM = ReLU (

M∑

m=1

αc
mAm) (A.2)

This map is of the same size (u× v) of Am. Finally, saliency map, Ism ∈ RW×H is generated by upsampling Lc
Grad−CAM

to the input image resolution using bilinear interpolation.
Ism = Upsample (Lc

Grad−CAM) (A.3)

B. Dataset Statistics

Table B.1. Statistics of the CIFAR-100, miniImageNet and CUB datasets used in task-incremental learning experiments.

Split CIFAR Split miniImageNet Split CUB

num. of tasks 20 20 20
input size (W ×H × C) 32× 32× 3 84× 84× 3 224× 224× 3

num. of classes/task 5 5 10
num. of training samples/tasks 2,500 2,500 300
num. of test samples/tasks 500 500 290

C. Memory Update Algorithm

Algorithm 2 Procedure for saliency guided episodic memory update in EPR
1: procedure UPDATEMEMORY(ME ,MT , fθ,EPF,Wp)
2: XAI: Procedure for saliency map generation; Ssm: stride; tk: task-ID
3: Initialize: Ip ← []; c← []; xcord ← []; ycord ← []; Ppred ← [] ▷ Initialize for memory selection
4: for (I, k, c) ∼MT do ▷ Sample one example at a time without replacement fromMT

5: Ism ← XAI(fθ, I, c) ▷ generate saliency map using Equation 1
6: xcord, ycord ← average-pool(Ism,Wp, Ssm) ▷ get corner coordinates of the most salient region in input,I
7: Ip ← I(xcord : xcord +Wp, ycord : ycord +Wp) ▷ get patch from Equation 4
8: I

′
p ← Zero-pad(Ip, xcord, ycord)

9: pred← fθ(I
′
p) ▷ check model prediction after zero-padding

10: Ip ← [Ip, Ip] ▷ add patch
11: Ppred ← [Ppred, pred] ▷ add prediction
12: c← [c, c] ▷ add class label
13: xcord ← [xcord, xcord] ▷ add xcord

14: ycord ← [ycord, ycord] ▷ add ycord
15: end for
16: (Ip, c, xcord, ycord)← select-patches(Ip, c, xcord, ycord,Ppred,EPF) ▷ see section 6: memory patch selection
17: tk ← k
18: BME ← (Ip, tk, c)
19: ME ←ME ∪ {(BME , xcord, ycord)} ▷ update episodic memory
20: returnME

21: end procedure

D. List of Hyperparameters
List of hyperparameters used for both baseline methods and our approach is provided in Table D.1. EPF values used in

different experiments in our method are given in Table D.2.

Table D.1. Hyperparameters grid considered for the baselines and our approach. The best values are given in parentheses. Here, ‘lr’
represents learning rate. In the table, we represent Split CIFAR as ‘cifar’, Split miniImageNet as ‘minImg’ and Split CUB as ‘cub’. EPF is
experience packing factor andMT is the temporary ring buffer in EPR.

Methods Hyperparameters

Finetune lr : 0.003, 0.01, 0.03 (cifar, minImg, cub), 0.1, 0.3, 1.0

EWC lr : 0.003, 0.01, 0.03 (cifar, minImg, cub), 0.1, 0.3, 1.0
regularization, λ : 0.1, 1, 10 (cifar, minImg, cub), 100, 1000

RRR lr : 0.003, 0.01 (cub), 0.03, 0.1, 0.3, 1.0
regularization : 10, 100 (cub), 1000

A-GEM lr : 0.003, 0.01, 0.03 (cifar, minImg, cub), 0.1, 0.3, 1.0

MER lr : 0.003, 0.01, 0.03 (cifar, minImg), 0.1 (cub), 0.3, 1.0
with in batch meta-learning rate, γ : 0.01, 0.03, 0.1 (cifar, minImg, cub), 0.3, 1.0
current batch learning rate multiplier, s : 1, 2, 5 (cifar, minImg, cub), 10

MEGA-I lr : 0.003, 0.01, 0.03 (cifar, minImg, cub), 0.1, 0.3, 1.0
sensitivity parameter, ϵ : 1e−5, 1e−4, 0.001, 0.01 (cifar, minImg, cub), 0.1

DER++ lr : 0.003, 0.01, 0.03 (minImg, cub), 0.1 (cifar), 0.3, 1.0
regularization α : 0.1 (minImg), 0.2 (cifar), 0.5 (cub), 1.0
regularization, β : 0.5 (cifar, minImg, cub), 1.0

ASER lr : 0.003, 0.01, 0.03 (cub), 0.1 (cifar, minImg), 0.3, 1.0
K : 3 (cifar, minImg, cub); Nc : 100 (cifar, miniImg), 150 (cub), 250

ER-Reservoir lr : 0.003, 0.01, 0.03 (cub), 0.1 (cifar, minImg), 0.3, 1.0

ER-RING lr : 0.003, 0.01, 0.03 (cifar, minImg, cub), 0.1, 0.3, 1.0

HAL lr : 0.003, 0.01, 0.03 (cifar, minImg), 0.1, 0.3, 1.0
regularization, λ : 0.01, 0.03, 0.1, 0.3 (minImg), 1 (cifar), 3, 10
mean embedding strength, γ : 0.01, 0.03, 0.1 (cifar, minImg), 0.3, 1, 3, 10
decay rate, β : 0.5 (cifar, minImg)
gradient steps on anchors, k : 100 (cifar, minImg)

Multitask lr : 0.003, 0.01, 0.03 (cifar, minImg, cub), 0.1, 0.3, 1.0

EPR (ours) lr (task-incremental) : 0.01, 0.03 (cub), 0.05 (minImg), 0.1 (cifar), 0.3, 1.0
lr (class-incremental) : 0.01, 0.05 (cifar, minImg), 0.1
examples per class temporarily stored in MT : γ × EPF; γ : 2(cub), 5 (cifar,minImg)
stride, Ssm : 1 (cifar, minImg), 2, 3 (cub)

Table D.2. Experience Packing Factor (EPF) for different nsc used in our (a) task-incremental learning and (b) class-incremental learning
experiments. Input image width, W for CIFAR, miniImageNet and CUB dataset are 32, 84 and 224 respectively. For given nsc, EPF and
W , corresponding memory patch sizes (Wp) are also given in the table.

(a)

Split CIFAR Split miniImageNet Split CUB

nsc EPF Wp EPF Wp EPF Wp

2 3 26 5 53 7 119
1 2 22 3 48 4 112

0.75 1 27 2 51 3 112
0.5 1 22 2 42 2 112

(b)

CIFAR-100 miniImageNet
(20 Tasks) (10 Tasks)

|ME | nsc EPF Wp EPF Wp

2k 20 25 28 25 75
1k 10 13 28 13 73

E. Additional Results

Table E.1. Performance comparison of different experience replay methods for different memory sizes in task-incremental learning
setup. Number of memory slots per class, nsc={0.5, 0.75} refers to memory size, |ME |={42, 64} for CIFAR and miniImageNet, and
|ME |={85, 128} for CUB. Average and standard deviations are computed over 5 runs for different random seeds.

Split CIFAR Split miniImageNet Split CUB

nsc Methods ACC (%) BWT ACC (%) BWT ACC (%) BWT

- Finetune 42.9 ± 2.07 - 0.25 ± 0.03 34.7 ± 2.69 - 0.26 ± 0.03 55.7 ± 2.22 - 0.13 ± 0.03

MEGA-I 48.9 ± 1.68 - 0.21 ± 0.01 43.8 ± 1.58 - 0.14 ± 0.01 61.5 ± 2.08 - 0.08 ± 0.01
0.75 DER++ 50.0 ± 1.81 - 0.19 ± 0.02 47.2 ± 1.54 - 0.12 ± 0.01 64.8 ± 1.61 - 0.06 ± 0.01

ER-RING 50.4 ± 0.85 - 0.21 ± 0.02 44.9 ± 1.49 - 0.14 ± 0.02 64.0 ± 1.29 - 0.05 ± 0.01
EPR (Ours) 56.8 ± 1.59 - 0.12 ± 0.02 51.1 ± 1.47 - 0.06 ± 0.01 70.7 ± 0.72 - 0.03 ± 0.01

MEGA-I 43.7 ± 1.26 - 0.26 ± 0.02 39.6 ± 2.35 - 0.18 ± 0.02 57.7 ± 0.62 - 0.11 ± 0.01
0.5 DER++ 47.5 ± 1.58 - 0.21 ± 0.01 45.6 ± 0.56 - 0.13 ± 0.01 62.5 ± 1.45 - 0.08 ± 0.01

ER-RING 44.6 ± 0.84 - 0.27 ± 0.01 39.1 ± 1.38 - 0.20 ± 0.02 59.2 ± 0.97 - 0.10 ± 0.01
EPR (Ours) 55.6 ± 0.54 - 0.13 ± 0.02 49.2 ± 1.20 - 0.07 ± 0.01 70.3 ± 0.91 - 0.03 ± 0.01

