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Norm. Precision Success
Tracker LaSOT HOOT ∆ LaSOT HOOT ∆
ATOM 0.576 0.420 -0.156 0.515 0.352 -0.163
SiamRPN++ 0.569 0.448 -0.121 0.496 0.389 -0.107
DiMP 0.650 0.462 -0.188 0.569 0.399 -0.170
PrDiMP 0.688 0.486 -0.202 0.598 0.420 -0.178
Ocean 0.651 0.467 -0.184 0.560 0.389 -0.171
TransT 0.738 0.589 -0.149 0.649 0.492 -0.157
KeepTrack 0.772 0.570 -0.202 0.671 0.484 -0.187
AutoMatch - 0.478 - 0.583 0.394 -0.189
Stark-ST101 0.770 0.571 -0.199 0.671 0.495 -0.176

Table 1: Comparison of the overall performance results be-
tween HOOT and LaSOT test sets. The table below only
includes trackers that have also evaluated on LaSOT, and
presents normalized precision and success numbers for both
datasets. It shows a steep decline in performance for HOOT,
which has much higher occlusion representation. Green
numbers mark the trackers that suffered the least drops
between LaSOT and HOOT, while red numbers mark the
trackers that suffered the most.

1. Performance Comparisons with LaSOT

In this section, we compare the results of the state-of-the-
art algorithms we evaluated on HOOT to their performance
on the LaSOT test set. While not directly comparable, these
results demonstrate how challenging HOOT can be, com-
pared to the current popular benchmarks that do not have
heavy occlusion distributions.

Table 1 shows the overall performance results for success
and normalized precision metrics in LaSOT and HOOT test
sets. We only present trackers that have previously evalu-
ated on LaSOT, and use numbers given in their papers to
compile the LaSOT results. Comparing the difference in
overall performance, we observe that even strong state-of-
the-art trackers can suffer drops when evaluated on HOOT.
For normalized precision, this drop was found to be be-
tween 12-20%, while for success, it ranged from 10% to
19%. The tracker that suffered the least was SiamRPN++,
which might be due to its fully offline training framework.
On the other hand, trackers that perform online model up-
dates (like KeepTrack and DiMP variants) suffered higher

drops in performance compared to their performance in La-
SOT. This shows how difficult HOOT is compared to the
current datasets in the field of visual object tracking.

2. Data Collection & Annotation
In this section, we present further details on the data col-

lection and annotation process, which include the specific
instructions we asked collectors and annotators to follow
during the process. We hope that this provides more trans-
parency on how HOOT was created.

Those who were recruited for video collection received
a tutorial explaining the aim of the project, basic defini-
tions and sample videos taken by the authors. They were
instructed to follow the instructions below:

• Set video quality to 1080p or higher (with 4k pre-
ferred) and shoot in landscape mode.

• Set frame rate to at least 30fps.
• Eliminate illumination variance by shooting in day-

light or sufficiently lit indoor environments.
• Set the maximum distance of the object from the cam-

era to a distance where the object can be clearly iden-
tified as the correct class.

• Ensure the object is fully visible in the first frame (ex-
ceptions were shooting a target through glass or water).

• Use different types of occluders and create heavy oc-
clusion scenarios.

• Do not include any identifying information (like faces)
without consent of the subjects appearing in the video.

The recruits also had access to the object class list and
dataset statistics (updated frequently), so they could tai-
lor their videos to include more of the occluders or object
classes that were represented less.

During the annotation phase, the annotators were given
extensive written instructions and an in-person tutorial for
using CVAT for annotating the videos. The exact steps they
followed to have a video ready for validation are as follows:

• Watch video to label per-video target and motion tags.
• Annotate the target object given in the first frame

by fitting an appropriate rotated bounding box to it
throughout the rest of the video. (The annotators
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Figure 1: Distributions of occlusion related attributes in the HOOT test set. (a) Video-level attribute distributions. (b) Frame-
level attribute distributions. (c) Distributions of target occlusion level per occluder type across partially occluded frames.

were allowed to utilize the interpolation tool of CVAT,
but were instructed to carefully check the interpolated
frames.)

• Label occlusion tags presented in the main text for ev-
ery frame.

• Create occluder polygons for objects that occlude the
target. (Mostly using multi-vertex polygons, depend-
ing on the complexity of the occluder, with static oc-
cluders being easier to label in more detail). Occluder
masks were created out of these polygons.

• Do not create solid occluders for the limited occlusions
caused by a hand moving the target (i.e. fingers block-
ing parts of the target).

• Estimate the full rotated bounding box position for
frames where the target is partially or fully occluded
by an occluder.

Measures taken to ensure annotation quality and consis-
tency were as follows:

• Annotation tasks were distributed to annotators by ob-
ject class, in order to have annotation consistency for
each object type.

• Annotators were given online feedback as they anno-
tate, until they achieved the desired annotation stan-
dards set by the authors.

• Two rounds of validation were performed by the au-
thors after annotation to carefully check each frame for
correct occlusion-related attributes and high-quality
polygons and fix any errors.

3. Attribute Distributions for Protocol II
HOOT is divided into two protocols. While Protocol I

is evaluation using all 581 videos in the dataset, Protocol II
defines a 130-video test split and performs evaluations on
those videos. This opens the remaining videos in HOOT for
training and development of algorithms.

In addition to the occlusion attribute statistics for the en-
tire dataset (given in the main text), we also present the test
split occlusion attribute statistics here. Fig. 1 below shows
the video and frame level attribute distributions for the an-
notated occlusion data in the test set, as well as the per-
centage of target occlusion in the partially occluded frames
for the defined occluder types. We find that the distribu-
tions look very similar to the overall dataset, except for the
frames when the target is absent from the video occurring
in fewer percentages in the test set.

4. Qualitative Results

In this section, we present qualitative results for a variety
of trackers we evaluated on HOOT. The trackers that we vi-
sualized in Fig. 2 cover fully-convolutional Siamese track-
ers like SiamRPN++, to trackers that make online model up-
dates (such as DiMP variants), to transformer-based track-
ers (TransT), as well as a spatio-temporal trackers such as
Stark-ST101.

We present these qualitative results in two parts. Fig. 2a
contains 4 frames from 3 randomly selected videos with an
average success rate of 0.418. These are videos that trackers
found to be of medium difficulty. On the other hand, Fig. 2b
shows results of 3 randomly selected videos that on average
scored 0.128 for success. Therefore, these videos and their
selected frames show examples of trackers performing sig-
nificantly low on HOOT videos.

5. Additional Performance Plots

Finally, in this section, we present several performance
plots for different occlusion types that we were not able to
include in the main text.

Looking at the success curves for the occlusion attributes
cut-by-frame, absent and multiple occluders (Fig 3), we
find that tracker rankings remain mostly similar to the over-
all success curves. We notice that trackers suffer larger



(a) Sample frames from videos that on average scored 0.418 on the success metric.

(b) Sample frames from videos that on average scored 0.128 on the success metric.

Figure 2: Qualitative tracking results of select high-performing trackers on HOOT.

performance drops for videos that include absence, how-
ever, SiamRPN++ (LT) does perform better than the origi-
nal SiamRPN++ for this attribute as expected. When com-
puting performance for absence, absent frames were not
considered since metrics cannot be computed for those. Full
occlusion cases were included, since the HOOT annotations
include boxes estimated by annotators even though the ob-
ject is fully occluded. In addition, we find that cut-by-frame

and multiple occluder scenarios were not as difficult for
trackers compared to similar occluders, for which a much
bigger drop in performance was observed.

We observed similar trends to success for both precision
and normalized precision across all evaluations. However,
minor changes in the rankings did occur. We illustrate this
with the precision curves for varying location error thresh-
olds presented for different occluder types defined in the



(a) Cut-By-Frame (b) Absent (c) Multiple Occluders

Figure 3: Success curves for the remaining occlusion attributes annotated in HOOT, computed for Protocol I.
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Figure 4: Precision curves for the different occluder types annotated in HOOT, computed for Protocol I. (a)-(d) Precision
curves. (e)-(h) Normalized Precision curves

paper, Fig. 4.

In addition to the above analyses, we also computed suc-
cess curves for the rest of attributes annotated in HOOT,
which are the motion and target attributes. Fig. 5 shows
different success curves for motion attributes, which shows
that even with heavy occlusion, trackers perform better in
videos that contain static objects, and worse for dynamic
targets (which would be expected). Surprisingly, a major
drop in performance was observed for videos with no cam-
era motion (the highest scoring tracker’s AUC for success
dropped from 0.574 to 0.471). While trackers should intu-
itively perform better without any camera motion, this drop
might imply that creating heavy occlusion conditions were

probably easier for static camera scenarios, making videos
with no camera motion more difficult.

Lastly, we present analyses for target attributes anno-
tated for HOOT in Fig. 6. We find that performance re-
sults for videos that either contain or do not contain these
attributes were pretty similar, which shows the effect of
occlusions do not change too much with these attributes.
Notable changes were trackers performing worse for non-
animate target videos. This is likely because non-animate
objects can easily be put into heavier occlusion scenarios,
which also explains the larger drop for videos that contain
non self-propelled objects. These show that by controlling
for occlusions in this manner, we were indeed able to create



(a) Dynamic Target (b) Static Target - Parallax (c) Static Target - Mov. Occ. (d) No Cam. Motion

Figure 5: Success curves for videos that contain different motion tags for HOOT Protocol I. We annotate videos that contain
dynamic targets and camera motion. Moreover, for static targets, we annotate tags that signify occlusion due to parallax and
occlusion due to moving occluder.

(a) Animate (b) Deformable (c) Self-Propelled

(d) Non-Animate (e) Non-Deformable (f) Non Self-Propelled

Figure 6: Success curves for videos in HOOT annotated by different target attributes, computed for Protocol I. (a)-(c) Videos
each target attribute is set to true. (d)-(f) Videos each target attribute is set to false.

difficult scenarios that affect tracker performance, and that
HOOT can indeed be used to evaluate trackers on heavy oc-
clusions.
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