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Table 1: Overview of Supplementary Material.

A. Dataset Details
We evaluate the performance of our approach on several

benchmark datasets for partial domain adaptation, namely
Office31 [12], Office-Home [14], ImageNet-Caltech and
VisDA-2017 [10]. The following are the detailed descrip-
tions of the above datasets:

Office31. This dataset contains 4,110 images distributed
among 31 different classes and collected from three
different domains: Amazon (A), Webcam (W) and DSLR
(D), resulting in 6 transfer tasks. The dataset is imbalanced
across domains with 2,817 images belonging to Amazon,
795 images to Webcam, and 498 images to DSLR, making
Amazon a larger domain as compared to Webcam and
DSLR. For all our experiments, we select the 10 classes
shared by Office31 and Caltech256 [6] as the target cate-
gories and obtain the following label spaces:
Lsource = {0, 1, 2, ..., 30}.
Ltarget = {0, 1, 5, 10, 11, 12, 15, 16, 17, 22}.
Number of Outlier Classes = 21.
Figure 1 shows few randomly sampled images from this
dataset. The dataset is publicly available to download at:
https://people.eecs.berkeley.edu/˜jhoffman/

domainadapt/#datasets_code.

Office-Home. This dataset contains 15,588 images dis-
tributed among 65 different classes and collected from four
different domains: Art (Ar), Clipart (Cl), Product (Pr), and
RealWorld (Rw), resulting in 12 transfer tasks. The dataset
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Figure 1: Sampled Images from Office31 Dataset. Each row
from top to bottom corresponds to the domains Amazon, Dslr and
Webcam, respectively. The images in the same column belong to
the same class. Best viewed in color.

is split across domains with 2427 images belonging to Art,
4365 images to Clipart, 4439 images to Product, and 4347
images to RealWorld. We select the first 25 categories (in
alphabetic order) in each domain as the target classes and
obtain the following label spaces:
Lsource = {0, 1, 2, ..., 64}.
Ltarget = {0, 1, 2, ..., 24}.
Number of Outlier Classes = 40.
Figure 2 displays a gallery of sample images for this
dataset. The dataset is publicly available to download at:
http://hemanthdv.org/OfficeHome-Dataset/.

C
l
i
p
a
r
t

P
r
o
d
u
c
t

R
-
W
o
r
l
d

A
r
t

Figure 2: Sampled Images from Office-Home Dataset. Each
row from top to bottom corresponds to the domains Art, Clipart,
Product and RealWorld, respectively. The images in the same col-
umn belong to the same class. Best viewed in color.
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Figure 3: Sampled Images from ImageNet-Caltech Dataset.
The top row corresponds to the ImageNet domain, while the bot-
tom row to the Caltech domain. The images in the same column
belong to the same class. Best viewed in color.
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Figure 4: Sampled Images from VisDA-2017 Dataset. The top
row corresponds to the Synthetic domain, while the bottom row to
the Real domain. The images in the same column belong to the
same class. Best viewed in color.

ImageNet-Caltech. This large-scale dataset consists of
two datasets (ImageNet1K [11] (I) & Caltech256 [6] (C))
as two separate domains and consist of over 14 million
images combined. 2 transfer tasks are formed for this
dataset. While source domain contains 1,000 and 256
classes for ImageNet and Caltech respectively, each target
domain contains only 84 classes that are common across
both domains. As it is a general practice to use ImageNet
pretrained weights for network initialization, we use the
validation set images when using ImageNet as the target
domain. Number of Outlier Classes = 172 for C→I, 916 for
I→C. Figure 3 displays a gallery of sample images for this
dataset. The datasets are publicly available to download at:
http://www.image-net.org/

http://www.vision.caltech.edu/Image_

Datasets/Caltech256/.

VisDA-2017. This dataset contains 280,157 images dis-
tributed among 12 different classes and two domains. The
dataset contains three sets of images: training, validation
and testing. The training set contains 152,397 synthetic (S)
images, the validation set contains 55,388 real-world (R)
images, while the test set contains 72,372 real-world im-
ages. For the experiments, the training set is considered
as the Synthetic (S) domain, while the validation set as the
Real (R) domain, following [8]. This results in 2 transfer
tasks. The first 6 categories (in alphabetical order) are se-
lected in each of the domains as the target classes, and the
following label spaces are obtained:
Lsource = {0, 1, 2, ..., 11}.
Ltarget = {0, 1, 2, ..., 5}.
Number of Outlier Classes = 6.
Figure 4 displays a gallery of sample images for this dataset.
The dataset is publicly available to download at:
http://ai.bu.edu/visda-2017/#download.

B. Implementation Details

The training pipeline pseudo-code for SLM is shown in
Algorithm 1. Following are the detailed description of the
implementation we follow for various components of the
framework:

Feature Extractor (G). We use ResNet-50 [7] backbone
for the feature extractor. The overall structure of ResNet-
50 is Initial Layers, Layer-1, Layer-2,
Layer-3, Layer-4, AvgPool, Fc. The model
is initialized with ImageNet [11] pretrained weights.
Additionally, we add a bottleneck layer of width 256 just
after the AvgPool layer to obtain the features and replace
all the BatchNorm layers with Domain-Specific Batch-
Normalization [4] layers. All the layers till Layer-3 are
frozen and only the rest of the layers are fine-tuned.

Selector Network (H). We use a ResNet-18 [7] network
with the Fc layer replaced with a binary-length fully con-
nected layer as the selector network in our framework. The
network is initialized with ImageNet pretrained weights and
all the layers are trained while optimization.

Classifier (F). The final Fc layer of ResNet-50 described
above is replaced with a task-specific fully-connected layer
to form the classifier network of our framework.

Domain Discriminator (D). A three-layer fully-connected
network is used as the domain discriminator network. It
takes the 256-length features obtained from the feature ex-
tractor as input. The adversarial training is incorporated us-
ing a gradient reversal layer (GRL).

Hyperparameters. All the networks are optimised using
mini-batch stochastic gradient descent with a momentum of
0.9. A batch size of 64 is used for Office31 and VisDA-
2017 while a batch size of 128 is used for Office-Home and
ImageNet-Caltech. For feature extractor an initial learn-
ing rate of 5e-5 for the convolutional layers while an ini-
tial learning rate of 5e-4 for all the fully-connected layers is
used. For the selector network and the domain discrimina-
tor an initial learning rate of 5e-3 and 5e-4 are used respec-
tively. The learning rates are decayed following a cosine-
annealing strategy as the training progresses. The best mod-
els are captured by obtaining the performance on a valida-
tion set. We do NOT follow the ten-crop technique [2, 3], to
improve the performance in the inference phase. We obtain
the best hyperparameters using grid search. All the exper-
iments were averaged over three runs, which used random
seed values of 1, 2, and 3 respectively.

Hardware and Software Details. All the experi-
ments were conducted using a single NVIDIA Tesla
V100-DGXS GPU with 32 GigaBytes of memory,
equipped with a Intel(R) Xeon(R) CPU E5-2698
v4 @ 2.20GHz. We used PyTorch v1.4.0, Python
v3.6.10 to implement the codes.



Algorithm 1 The training pipeline for SLM
Data: source data Dsource and target data Dtarget.
Networks: Selector Network H(.), Feature Extrac-
tor G(.), Classifier F(.), and Domain Discriminator
D(.).

1: Initialize networks G(.), F(.), H(.), and D(.) in SLM.
2: for itrn = 1 → num itrn do
3: Obtain the mini-batches Db

source and Db
target.

# “Select” Module
4: Obtain the binary decisions from H(Db

source) & use
them to obtain Db

sel & Db
dis.

# “Label” Module
5: Obtain soft pseudo-labels ŷb from F(G(Dtarget)) for

Dtarget.
# “Mix” Module

6: Obtain Db
inter mix, Db

intra mix s, and Db
intra mix t.

7: Compute Lsup, Ladv , Lselect, Llabel, and Lmix.
8: Compute the gradients & backpropagate for opti-

mization using gradient descent.
9: end for

C. Additional Experimental Results

Results on Office-Home Dataset. In Table 2, along with
the performance accuracies, we have included the stan-
dard deviation for each adaptation task for the Office-Home
dataset, as promised in Table-2 of the main paper.

Effectiveness on Different Backbone Networks. To show
that the proposed framework is backbone-agnostic, i.e., it
provides the best performance irrespective of the architec-
ture of the feature extractor, we conduct experiments us-
ing a VGG-16 [13] backbone for the feature extractor. We
report the results on the transfer tasks from the Office31
dataset in Table 3 and compare it with the current state-of-
the-art methods. Our method outperforms the previously
best results by a margin of 3.0% on average and achieves
new state-of-the-art results. This confirms that our proposed
framework for partial domain adaptation is robust with re-
spect to the change of backbone network.

Effectiveness of Individual Modules. In Section 4.3 of the
main paper, we discussed the importance of the proposed
three unique modules on Office-Home dataset. Here, we
extend the experiments to Office31 and VisDA-2017 and
provide the performance on the transfer tasks in Table 4.
Similar to the results on Office-Home dataset, our approach
with all the three modules (Select, Label and Mix) working
jointly, works the best on both datasets.

Effectiveness of Hausdorff Distance. We investigate the
effect of Hausdorff distance (Eqn. 2 in the main paper) in
selector network training and find that removing it lowers
down performance from 76.0% to 73.7% on Office-Home

dataset, showing its importance in guiding the selector to
discard the outlier source samples for effective reduction in
negative transfer. We provide the individual performance
of all the transfer tasks on Office-Home dataset in Table 5,
which shows that our approach with Hausdorff distance loss
works the best in all cases.
Effectiveness of Soft Pseudo-Labels. We also test the ef-
fectiveness of soft pseudo-labels by replacing them with
hard pseudo-labels for the target samples and observe that
the average performance decreases from 76.0% to 72.0% on
Office-Home dataset. This confirms that soft pseudo-labels
are critical in attenuating the unwanted deviations caused by
the false and noisy hard pseudo-labels. We provide the per-
formance on each of the transfer tasks from Office-Home in
Table 6.
Effectiveness of Different MixUp. We examined the ef-
fect of mixup regularization on both domain discriminator
and classifier separately in Section 4.3 of the main paper.
We concluded that our Mix strategy not only helps to ex-
plore intrinsic structures across domains, but also helps to
stabilize the domain discriminator. Here, we provide the
corresponding performance on each of the transfer tasks of
Office-Home in Table 7.

D. Qualitative Results
Feature Visualizations. We use t-SNE [9] to visual-
ize the features learned using different components of our
SLM framework. We choose an UDA setup (similar to
DANN [5]) as a vanilla method and add different mod-
ules one-by-one to visualize their individual contribution in
learning discriminative features for partial domain adapta-
tion. As seen from Figure 5, the feature space for vanilla
setup lacks dicriminability for both source and target fea-
tures. The discriminability improves for both source as well
as target features as we add “Select” and “Label” to the
Vanilla setup. The best results are obtained when all three
modules “Select”, “Label” and “Mix” i.e., SLM are added
and trained jointly in an end-to-end manner.

E. Broader Impact and Limitations
Our research can help reduce burden of collecting large-
scale supervised data in many real-world applications of
visual classification by transferring knowledge from mod-
els trained on large broad datasets to specific datasets pos-
sessing a domain shift. This scenario is quite common as
large datasets (e.g. ImageNet [11]) can be used for training
which contain a broader range of categories while our goal
can be to transfer the knowledge to smaller datasets with a
smaller number of categories. The positive impact that our
work could have on society is in making technology more
accessible for institutions and individuals that do not have
rich resources for annotating newly collected datasets. We



Office-Home
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Average
ResNet-50 47.2±0.2 66.8±0.3 76.9±0.5 57.6±0.2 58.4±0.1 62.5±0.3 59.4±0.3 40.6±0.2 75.9±0.3 65.6±0.1 49.1±0.2 75.8±0.4 61.3
DANN 43.2±0.5 61.9±0.2 72.1±0.4 52.3±0.4 53.5±0.2 57.9±0.1 47.2±0.3 35.4±0.1 70.1±0.3 61.3±0.2 37.0±0.2 71.7±0.3 55.3
CORAL 38.2±0.1 55.6±0.3 65.9±0.2 48.4±0.4 52.5±0.1 51.3±0.2 48.9±0.3 32.6±0.1 67.1±0.2 63.8±0.4 35.9±0.2 69.8±0.1 52.5
ADDA 45.2 68.8 79.2 64.6 60.0 68.3 57.6 38.9 77.5 70.3 45.2 78.3 62.8
RTN 49.4 64.3 76.2 47.6 51.7 57.7 50.4 41.5 75.5 70.2 51.8 74.8 59.3
CDAN+E 47.5 65.9 75.7 57.1 54.1 63.4 59.6 44.3 72.4 66.0 49.9 72.8 60.7
JDDA 45.8±0.4 63.9±0.2 74.1±0.3 51.8±0.2 55.2±0.3 60.3±0.2 53.7±0.2 38.3±0.1 72.6±0.2 62.5±0.1 43.3±0.3 71.3±0.1 57.7
SPL 46.4±0.0 70.5±0.6 77.2±0.0 61.0±0.0 65.2±0.0 73.2±0.0 64.3±0.0 44.7±0.0 79.1±0.0 69.5±0.0 58.0±0.0 79.8±0.0 65.7
PADA 53.2±0.2 69.5±0.1 78.6±0.1 61.7±0.2 62.7±0.3 60.9±0.1 56.4±0.5 44.6±0.2 79.3±0.1 74.2±0.1 55.1±0.3 77.4±0.2 64.5
SAN 44.4 68.7 74.6 67.5 65.0 77.8 59.8 44.7 80.1 72.2 50.2 78.7 65.3
IWAN 53.9 54.5 78.1 61.3 48.0 63.3 54.2 52.0 81.3 76.5 56.8 82.9 63.6
ETN 60.4±0.3 76.5±0.2 77.2±0.3 64.3±0.1 67.5±0.3 75.8±0.2 69.3±0.1 54.2±0.1 83.7±0.2 75.6±0.3 56.7±0.2 84.5±0.3 70.5
SAFN 58.9±0.5 76.3±0.3 81.4±0.3 70.4±0.5 73.0±1.4 77.8±0.5 72.4±0.3 55.3±0.5 80.4±0.8 75.8±0.4 60.4±0.8 79.9±0.2 71.8
DRCN 54.0 76.4 83.0 62.1 64.5 71.0 70.8 49.8 80.5 77.5 59.1 79.9 69.0
RTNet 62.7±0.1 79.3±0.2 81.2±0.1 65.1±0.1 68.4±0.3 76.5±0.1 70.8±0.2 55.3±0.1 85.2±0.3 76.9±0.2 59.1±0.2 83.4±0.3 72.0
RTNetadv 63.2±0.1 80.1±0.2 80.7±0.1 66.7±0.1 69.3±0.2 77.2±0.2 71.6±0.3 53.9±0.3 84.6±0.1 77.4±0.2 57.9±0.3 85.5±0.1 72.3
BA3US 60.6±0.5 83.2±0.1 88.4±0.2 71.8±0.2 72.8±1.1 83.4±0.6 75.5±0.2 61.6±0.4 86.5±0.2 79.3±0.7 62.8±0.5 86.1±0.3 76.0

Table 2: Performance on Office-Home. We highlight the best and second best method on each task. While the upper section shows
results of unsupervised domain adaptation approaches, the lower section shows results of existing partial domain adaptation methods.SLM
achieves the best average performance among all compared methods.

Office31
Method A → W D → W W → D A → D D → A W → A Average
VGG-16 [13] (ICLR’15) 60.3±0.8 98.0±0.6 99.4±0.4 76.4±0.5 73.0±0.6 79.1±0.5 81.0
PADA [2] (ECCV’18) 86.1±0.4 100.0±0.0 100.0±0.0 81.7±0.3 93.0±0.2 95.3±0.3 92.5
SAN [1] (CVPR’18) 83.4±0.4 99.3±0.5 100.0±0.0 90.7±0.2 87.2±0.2 91.9±0.4 92.1
IWAN [15] (CVPR’18) 82.9±0.3 79.8±0.3 88.5±0.2 91.0±0.3 89.6±0.2 93.4±0.2 87.5
ETN [3] (CVPR’19) 85.7±0.2 100.0±0.0 100.0±0.0 89.4±0.2 95.9±0.2 92.3±0.2 93.9
SLM (Ours) 92.0±0.1 99.8±0.2 99.6±0.5 98.1±0.0 96.1±0.0 96.0±0.1 96.9

Table 3: Performance on Office31 with VGG-16 backbone. Numbers show the accuracy (%) of different methods on partial domain
adaptation setting. We highlight the best and second best method on each transfer task. Our proposed framework, SLM achieves the best
performance on 4 out of 6 transfer tasks including the best average performance among all compared methods.

Modules Office31 VisDA-2017
Select Label Mix A → W D → W W → D A → D D → A W → A Average R → S S → R Average

✗ ✗ ✗ 88.0 98.3 95.8 88.8 84.5 80.2 89.3 57.7 56.4 57.0
✓ ✗ ✗ 91.8 99.3 96.6 93.8 94.2 93.5 94.9 69.0 68.4 68.7
✓ ✓ ✗ 92.4 99.9 99.2 94.9 95.5 93.8 96.0 77.2 84.8 81.0
✓ ✓ ✓ 99.8 100.0 99.8 98.7 96.1 95.9 98.4 77.5 91.7 84.6

Table 4: Effectiveness of Different Modules on Office31 and VisDA-2017 Datasets. Our proposed approach achieves the best perfor-
mance with all the modules working jointly for learning discriminative invariant features in partial domain adaptation.

Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Pr → Cl Pr → Rw Average
W/o Hausdorff Loss 56.2 83.1 90.3 72.6 71.5 80.8 71.4 51.6 84.8 82.5 57.5 81.7 73.7
Ours (SLM) 61.1 84.0 91.4 76.5 75.0 81.8 74.6 55.6 87.8 82.3 57.8 83.5 76.0

Table 5: Effectiveness of Hausdorff Triplet Loss on Office-Home Dataset. The table shows the performance of the framework without
(top-row) and with (bottom-row) the inclusion of the Hausdorff distance triplet loss. The results highlight the importance of the Hausdorff
distance loss in our proposed framework.



Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Pr → Cl Pr → Rw Average
W/ Hard Pseudo-labels 52.5 79.9 90.2 73.5 72.6 78.2 69.9 47.5 87.5 78.6 50.6 82.7 72.0
Ours (SLM) 61.1 84.0 91.4 76.5 75.0 81.8 74.6 55.6 87.8 82.3 57.8 83.5 76.0

Table 6: Effectiveness of Soft Pseudo-labels on Office-Home Dataset. Table shows the performance of the framework when we replace
the soft pseudo-labels with hard pseudo-labels (top-row) for the target samples. The results justify that the soft pseudo-labels are critical
for our framework and attenuate unwanted deviations caused by hard pseudo-labels.

Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Pr → Cl Pr → Rw Average
No Domain Discriminator MixUp 56.2 81.5 90.0 74.0 71.8 80.3 72.2 50.9 86.3 79.8 58.0 82.0 73.6
No Classifier MixUp 57.8 82.9 88.5 75.1 73.6 79.3 69.0 54.9 86.6 79.8 57.6 81.2 73.9
Ours (SLM) 61.1 84.0 91.4 76.5 75.0 81.8 74.6 55.6 87.8 82.3 57.8 83.5 76.0

Table 7: Effectiveness of Different MixUp on Office-Home Dataset. The table shows the performance of the framework with the
exclusion of mixup regularization from the domain discriminator (top-row) and the classsifier (middle-row). The final row shows the
results of the proposed SLM framework, which provides the best performance confirming the importance of our Mix strategy.

Vanilla Select Select + Label Select + Label + Mix (SLM)

Vanilla Select Select + Label Select + Label + Mix (SLM)

Vanilla Select Select + Label Select + Label + Mix (SLM)

Vanilla Select Select + Label Select + Label + Mix (SLM)

Figure 5: Feature Visualizations using t-SNE. Plots show visualization of our approach with different modules on A→W, A→D, W→A,
and D→A tasks repectively (top to down) from Office31 dataset. Blue and red dots represent source and target data respectively. As can
be seen, features for both target as well as source domain become progressively discriminative and improve from left to right by adoption
of our proposed modules. Best viewed in color.

also believe our approach of selecting relevant source data
would motivate the research community to extend it to var-
ious open-world problems and would help in training more
generalizable models. Negative impacts of our research are

difficult to predict, however, it shares many of the pitfalls
associated with standard deep learning models such as sus-
ceptibility to adversarial attacks and lack of interpretablity.
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