
High-Quality RGB-D Reconstruction via Multi-View
Uncalibrated Photometric Stereo and Gradient-SDF —

Supplementary Material

Lu Sang1,2 Björn Häfner1,2 Xingxing Zuo1

Daniel Cremers1,2

1Technical University of Munich
2Munich Center for Machine Learning

{lu.sang, bjoern.haefner, Xingxing.Zuo, cremers}@tum.de

This Supplement contains information on code, datasets, some more visualizations of results, and the mathematical details
of the proposed algorithm.

1. Used Code and Datasets
The following table summarizes the code and datasets we use for evaluation and comparison. We compare with the

methods whose code is publicly available and can be successfully compiled and run. Only for the work of Bylow el at. [8]
we implement their method ourselves because their method has similarities with our proposed method, but the author has not
published the code yet. Our code and recorded datasets will be made publicly available after the publication.

code/data year link license

[39] TUM RGB-D Benchmark dataset 2012 https://vision.in.tum.de/

data/datasets/rgbd-dataset

CC BY 4.0

[22] Intrinsic3D Dataset dataset 2017 https://vision.in.tum.de/
data/datasets/intrinsic3d

CC BY 4.0

[46] multi-view stereo dataset dataset 2015 http://graphics.stanford.

edu/projects/vsfs/

CC BY-NC-SA 4.0

[34] 3D Scene Data dataset 2014 https://qianyi.info/
scenedata.html

-

[39] TUM RGB-D Benchmark code 2012 https://vision.in.

tum.de/data/datasets/

rgbd-dataset/tools

BSD-2

[36] BAD SLAM code 2019 https://github.com/ETH3D/

badslam

BSD-3

[38] Gradient-SDF code 2022 https://github.com/

c-sommer/gradient-sdf

BSD-3

[22] intrinsic3d code 2017 https://github.com/NVlabs/

intrinsic3d

BSD-3

[40] NeuS code 2021 https://github.com/

Totoro97/NeuS

MIT License

[42] volSDF code 2021 https://github.com/

lioryariv/volsdf

MIT License

Table S2. Used datasets and code in our submission, together with reference, link, and license.

1

2. Visualization Results on TUM RGB-D Datasets
We evaluate our method on the TUM RGB-D datasets to validate the camera pose refinement. Notably we take lighting

conditions into account. The qualitative Root Mean Square Error (RMSE) of the absolute trajectory error is shown in Table 1
of the main paper. Here we visualize in the Figure S1 the refined point cloud of more sequences and compare with two other
baseline methods: badslam [36] and gradient-SDF [38]. For each sequence, we take 300 frames as input to initialize SDF
with 2cm voxel size and the camera poses, then 30 keyframes are chosen using a sharpness detector [3] to avoid manual
selection. An up-sampling is applied after 10 iterations.

Gradient-SDF [38] BAD SLAM [36] Ours

Figure S1. The reconstruction results on TUM RGB-D [39] sequences compare against two other camera tracking and refinement methods.
While different methods perform better across sequences, our method achieves comparable results to the best-performed method. In
addition, the texture is sharper and more precise.

3. Surface Geometry Refinement
3.1. Synthetic Data

We compare our results with two classical methods [8, 22] and two neural-rendering-based methods [40, 42]. Figure S2
shows the input RGB image with ground truth depth and noisy depth we use for validate methods. Our mesh accomplishes
more detailed surface reconstruction and a more faithful albedo. Note that the work of Maier el at. [22] does not recover
albedo but only recovers the gradient of its albedo. The color on the mesh is the average intensities of each voxel. The work [8]
estimates the albedo but fails to recover it with good quality. With only RGB and camera poses as input, volSDF [42] and
NeuS [40] can recover the mesh without color with a satisfactory quality but both works need train over 24 hours, and the
resolutions are still not good.

RGB image ground truth depth noisy depth initial mesh

Intrinsic3d [22] colored mesh Intrinsic3d [22] geometry [8] albedo [8] geometry

Ours albedo Ours geometry volSDF [42] geometry NeuS [40] geometry

Figure S2. The rendered synthetic dataset bunny [33] with Kinect-like noise [16]. The initial mesh is the fused mesh after the camera
tracking stage. The instrinsic3d [22] is over smoothed, and the mesh of [8] fails to deal with noisy depth. The work [42] and [40] does not
recover albedo and the details are still missing.

3.2. Real-World Datasets

To measure the refined surface accuracy of our method quantitatively, we compare our results with a ground truth laser
scan of the Socrates and Vase Multi-View Stereo dataset [46], these datasets offer the color images, and corresponding depth
images, together with the pre-estimated camera poses. The depth images have been masked. All the outside areas are set to
zero. In the error map, the green color indicates the minor error, from the yellow to red color transaction indicates a larger
positive distance to the ground truth, and the blue direction indicates the negative distance to the ground truth. Figure S3
shows the comparison results of the related methods with our method. For the neural-rendering-based methods, volSDF [42]
can only recover the blurry shape while the NeuS [40] fails to give any reconstruction surface, even though masks are
provided. For classical methods, the work [8] suffers from the noisy depth, while intrinsic3d [22] can recover a good 3D
model. However, the proposed method can recover the surface’s fine scaled detail and achieve the smallest standard deviation
error.

RGB image volSDF [42] [8] [8] error

Intrinsic3d [22] Intrinsic3d [22] error Ours Ours error

Figure S3. Comparison results with the ground truth laser model of multi-view dataset Sokrates [46]. While NeuS [40] fails to give
any mesh, volSDF [42] gives only coarse estimated surface, the proposed method achieves error (standard deviation) of 1.2mm and
Intrinsic3D [22] and [8] have error 2.1mm and 3.7mm respectively.

4. Visualization of Multi-view and Recorded Dataset
In this section, we demonstrate on Figure S4 more visualization results of the 3D scene dataset [34] and our own recorded

dataset using the setup shown in Figure 3 in the paper. Both datasets have no camera poses offered.

initial mesh refined mesh

Figure S4. The first two rows are the results of Lion dataset [22] and figure dataset [46], we track 200 frames and take 20 keyframes. After
the refinement, the texture is more clear and the geometry detail is recovered. The last two rows are the recorded datasets. The refined
mesh recovered clear recognizable pattern and the original color of the object.

5. Related Mathematics
List of Mathematical Symbols Here we list the mathematical symbols we used in the paper for a reference.

Symbol Description Symbol Description
Ii i-th color image ls vector from point light source location to point x
p continuous 2D image point in R2 S2 2D sphere
x continuous point in R3 Ri rotation matrix of frame i

p(x) image points projected by space point x ti translation vector of frame i
ρ(x) reflectance (albedo) of point x o origin of camera coordinates
L(i,x) point x’s incoming radiance of direction i dS(x) minimum distance from point x to the surface S
vj position of voxel j in R3 ψj voxel j distance to the closest surface point
gj voxel j gradient n(x) surface normal at point x

max(·, ·) max operator, take the larger one µs anisotropy coefficient of point light source s
SH(·) spherical harmonics function ∇ gradient operator

Ψs point light source light intensity li lighting coefficient in SH model at i-th frame
V volume of the voxel grid I input image set
νji visibility indicator of voxel j at image i M(·, ·) image formation model

Table S3. Summary of used mathematical symbols.

6. Mathematical Details of Optimization
6.1. Image Formation Model

In this section, we illustrate the optimization details of the proposed method. The energy function is as described in
equation (11). The optimization with robust estimator Φ is performed using the re-weighted least square method. In this
section, we explain two proposed models in detail.

SH model From (5) and (6), note that xi is the point x under i-th image coordinates. We use the fact that first order SH
model is linear, so 〈li,SH(R>i x

j)〉 = 〈Rili,SH(n(xj))〉. The total energy for SH model is

min
{Ri,ti,li}i,{ρj ,ψj}j

E(ρj , ψj , Ri, ti, li) =
∑
i,j

νji Φ(Ii(π(R>i (xj − ti)))− ρj〈Rili,SH(n(xj))〉)

+ |
∥∥∇ψj∥∥− 1|2 . (S1)

We directly optimize for l̂i = Rili instead in the real experiment.

PLS model From (7), the total energy for PLS model is

min
{Ri,ti,Ψs

i}i,{ρj ,ψj}j
E(ρj , ψj , Ri, ti,Ψ

s
i)

=
∑
i,j

νji Φ(Ii(π(R>i (xj − ti)))−Ψs
iρ
j max(〈R>i n(xj),−R>i (xj − ti)〉, 0)∥∥R>i (xj − ti)

∥∥3)

+ |
∥∥∇ψj∥∥− 1|2 . (S2)

Optimization Let rji = Iji − ρjM(xj ,Xi) and rje =
∥∥∇ψj∥∥− 1. For the kth iteration, we optimize

min
∑
i,j

w(r
j,(k)
i)(rji)

2 + (rje)
2 = 0 , (S3)

where the weight function is defined as w(r) = Φ(r)
r , and computed using current residuals.

Camera pose The camera pose is updated using 6DoF presentation. For ωi ∈ SE(3), the rotation matrix Ri is updated by

R(k+1) = R(k) exp(−ωi) . (S4)

Written (S3) in vector form, we solve the linear system

(J>c WJc + λdI) exp(ωi) = J>c WJc (S5)

to solve the increment of the rotation matrix, Jc is the Jacobian matrix of Ri, and λd is the damping parameters and I is the
diagonal of the J>c WJc. For SH model, Jc calculated as

Jc =
dr

dωi
= [∇xI,∇yI]

dπ

dq

∣∣∣∣
q=R>

i (vj−gjψj−ti)

[
R>i (vj − gjψj − ti)

]
× , (S6)

and for near field light is

Jc =
dr

dωi
= [∇xI,∇yI]

dπ

dq

∣∣∣∣
q=R>

i (vj−gjψj−ti)

[
R>i (vj − gjψj − ti)

]
× −

[
ρjMvj ,Ri,ti(

)
]× . (S7)

Here π is the projection operator and (·)× is the twist matrix of the vector.
The translation vector is updated by t

(k+1)
i = t

(k)
i −∆ti, ∇ti is solved using the same step as exp(ωi). The Jacobian of

ti for LED model is
dr

dti
= [∇xI,∇yI]

dπ

dq

∣∣∣∣
q=R>

i (vj−gjψj−ti)
R>i , (S8)

and for the near field light the Jacobian is calculated using lagged attenuation term, that is we fix
∥∥∥(xji)

(k)
∥∥∥3

from last
iteration and treat it as a constant, then

dr

dti
= [∇xI,∇yI]

dπ

dq

∣∣∣∣
q=R>

i (vj−gjψj−ti)
R>i −

ρj∥∥∥xj(k)
i

∥∥∥3g
>
i . (S9)

Voxel Distance As mentioned in the paper, the surface normal n(xj) is approximated by normalized voxel gradient gj ,
thus it is the function of voxel distance ψj . In practice, the derivative of distance is calculated using (forward or backward)
finite difference, the ψjx, ψjy , ψjz is the neighbor voxel in x, y, z direction respectively.

n(xj) =
∇gj

‖∇gj‖
=

(ψj − ψjx, ψj − ψjy, ψj − ψjz)∥∥∥(ψj − ψjx, ψj − ψjy, ψj − ψjz)
∥∥∥ . (S10)

Then for the natural light model, the Jacobian of ψj is

Jψj = [∇xI,∇yI]
dπ

dq

∣∣∣∣
q=R>

i (vj−gjψj−ti)
R>i (

dgj

dψ
ψ − gj)− ρjl>i

dSH(gj)

dgj
dgj

dψj
, (S11)

and for the near field light model, for simplicity, like for camera translation update, we fix the attenuation term from last
update, and use the fact that

∥∥gj∥∥ ≈ 1, then the Jacobian jψj is

Jψj = [∇xI,∇yI]
dπ

dq

∣∣∣∣
q=R>

i (vj−gjψj−ti)
R>i (

dgj

dψj
ψj − gj) +

ρj∥∥∥xj,(k)
i

∥∥∥3

[
(vj − 2ψjg − ti)

> dg
j

dψj
− 1

]
, (S12)

Then the distance increment∇ψj is also solved by solving J>ψjWJψj∇ψj = J>ψjWr.

Reflectance and lighting For ρj and lighting li, the Jacobian matrices are also computed by simple dr
dρj , and dr

dli
, they are

relative straight forward to compute compare to distance and camera rotations, so we omit the detail here.

6.2. Camera Tracking

We use the SDF tracking energy to optimize the camera pose [38, 9]. To find the rigid body motion R and t for incoming
point cloud with points xk to the global shape S. The energy is

min
R,t

E(R, t) =
∑
k

wkdS(Rxk + t)2 , (S13)

note that k is point index in the current depth. For wk = max(min(1 + dk

T , 1), 0) and

|dS(x)| = min
xs∈S

‖x− xs‖ . (S14)

In our case

dS(x) = ψj∗ + (x− vj∗)>gj∗ , (S15)

∇dS(x) = gj∗ , (S16)

j∗ = arg min
j

∥∥x− vj
∥∥ . (S17)

After the R, t is optimized, the distance for current global shape S can be updated using current point cloud by weighted
average from starting frame until the current frame

ψ =
∑
i

widi
wi

(S18)

di = (xk∗ −R>i (v − ti))z (S19)

k∗ = arg min
k

∥∥xk −R>i (v − ti)
∥∥ . (S20)

References
[33] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Proceedings of the 21st Annual Conference on Com-

puter Graphics and Interactive Techniques, SIGGRAPH ’94, page 311–318, New York, NY, USA, 1994. Association for Computing
Machinery.

[34] Qian-Yi Zhou and Vladlen Koltun. Color map optimization for 3d reconstruction with consumer depth cameras. ACM Trans. Graph.,
33(4), jul 2014.

