
Automated Line Labelling:
Dataset for Contour Detection and 3D Reconstruction

Supplementary Material

Hari Santhanam∗ Nehal Doiphode∗

University of Pennsylvania
{harisan, lahen, jshi}@seas.upenn.edu

Jianbo Shi

1. Huffman-Clowes Labelling

As shown in Section 3.1, the Huffman-Clowes [5][4] line
labelling scheme results in three types of contours: convex,
concave, and obscuring. In Fig. 1, we show example 2D
scenes with the convexity marked, to provide a visual for
the definitions provided in Section 3.1. We do not mark
every contour, but provide example labels for each contour
type. Note again that the obscuring contour type is the com-
bination of limb and occluding contours. Understanding the
different contour types is crucial for line labelling.

2. Contour Extraction: Occlusion Cases

In this section, we describe the 4 major cases of occlu-
sion, through visual examples, and expand on the details in
Section 3.2. Moreover, we explain the algorithmic details
further. Recall that occlusion detection required a forward
and backward search. Again, for a contour C, in the for-
ward search let ˆc1f be the first visible point and ˆc2f be the
last visible point. In the backward search, let ĉ1b be the first
visible point and ĉ2b be the last visible point. In Fig. 2, we
show the main occlusion cases. In the leftmost image, the
contour C is completely occluded, yet c1 and c2 are visi-
ble. The resulting forward and backward search yields case
(1): ˆc1f = ˆc2f = c1 and ĉ1b = ĉ2b = c2. In the middle
image, the contour C is partially occluded, specifically the
portion containing c2. The forward and backward search
would yield case (2): ˆc1f = c1 and ˆc2f ̸= c2, and c2 is not
visible. Case (3) is just the opposite of case (2) and would
have a very similar contour occlusion. Finally, in the right-
most image, occlusion occurs somewhere between the end-
points. The forward and backward search would yield case
(4): ˆc1f = c1, ˆc2f ̸= c2, and ĉ1b = c2, ĉ2b ̸= c1. These are
the main types of occlusion that occur in our dataset.

*Equal contribution. Ordering determined at random.

3. Contour Classification Implementation

In section 3.3, we illustrate the process of contour clas-
sification, for obscuring, concave, and convex contours.
Here, we present the details in the pseudocode shown in
Alg. 1.

Data: {Ck}
Result: contour type indicating the classification

of contour Ck.
tri1, tri2← triangles(Ck); //triangles form Ck

type1← triangle type(tri1);
type2← triangle type(tri2);
if type1 = ’visible’ or type2 = ’visible’ then

return ’obscuring’;
end
c1, c2← centroid(tri1), centroid(tri2);
n1, n2← normal(tri1), normal(tri2);
d← c1− c2;
d← d/(∥d∥ + 1e-10);
convexity ← n1 · d− n2 · d;
if convexity ≥ 0 then

return ’convex’;
else

return ’concave’;
end

Algorithm 1: Pseudocode for contour classification,
given extracted visible contour Ck. We describe the
function triangle type in detail in Section 3.3. The Ex-
tended Convexity Criterion from [3], is written here as
well.

4. Contour Grouping Implementation

In section 3.4, we show the process of contour grouping.
Here, we present the intricacies with the pseudocode shown
in Alg.2.



Figure 1. Examples of labelled Huffman-Clowes scenes [5][4][6]. ’+’ is convex, ’-’ is concave, ’>’ is ’occluding’, and ’>>’ is limb. In
our paper, occluding and limb contours combine to form the category obscuring.

Figure 2. Examples of occlusion cases. In each case a contour C, with endpoints c1 and c2, is occluded. We mark ˆc1f and ˆc2f , the first
visible point and last visible point in the forward search respectively. We also mark ˆc1b and ˆc2b, the first visible point and last visible point
in the backward search respectively.

5. Line Labelled Groundtruths

Dataset Sampling Details We render the images in
Blender, at a fixed camera position of (x=10, y=2.5, z=0).
The light source is set at position (x=10, y=7, z=5).
Roughly N = 10 poses are chosen per model, sampled at
equal frequency around each axis.

Additional Visualizations We show additional
groundtruth labeled scenes in Figures 3 and 4. As is

convention in our paper, in Fig. 3, we label the obscuring
contours yellow, the concave contours blue, and the convex
contours green. The results in Fig. 3 are after contour
extraction and classification from Section 3.2 and 3.3
respectively, which deal with solely linear contours. As a
result, we develop the grouping algorithm in Section 3.4,
with more results shown in Fig. 4.



Figure 3. Examples of ground truths, with labels: obscuring (yellow), convex (green), concave (blue).

Figure 4. Examples of ground truths, with groupings: distinct colors represent unique groups.



Data: Already priority ordered heap H , where each
element h contains a key, h.key, that
indicates the contour, and a value, h.value,
for the mean normal vector of the group. The
priority is indicated in Section 3.4.

Result: list final groups that contains final
grouped contours

//initial grouping
while heap do

h← pop(heap); //pops top priority contour
h prev ← copy(h);
for n in neighbors(h) do

a← angle(h.value, n.value);
if a > Cthresh or label(h) ̸= label(n) then

continue; //grouping condition fails
end
h.key ← new contour(h.key, n.key);
h.value← new mean(h.value, n.value);

end
if h prev = h.key then

groups← append(h.key);
// conclude grouping for this contour

end

end
// further linking
for g in groups do

for n in neighbors(g) do
n1← length(super neighbor endpt(g, n));
n2← length(super neighbor endpt(n, g));
// super neighbor endpt returns neighbors

for arg1 at endpoint closest to arg2
a← angle(normal(g), normal(n));
cond1← (n1 = 1 and n2 = 1);
cond2← (a < Cthresh2);
cond3← (label(g) = label(n));
if cond1 and cond2 and cond3 then

g ← append(n)
place(g) //correctly place g back in
groups list

else
final groups← append(g)

end
end

end
return final groups

Algorithm 2: Pseudocode for contour grouping, given
ordered heap H , described in Section 3.4. We imple-
ment the initial grouping and further linking, from Sec-
tion 3.4. Cthresh is 3 radians and Cthresh2 is 30 radians.

6. Contour Labelling
In this section, we describe the training details of our

segmentation experiments in Section 4. Additionally, we
provide more visualization results, similar to Fig 3 in the
main report.

6.1. Training Details

We use the Detectron2[8] framework, and follow their
base settings for both SOLOv2[7] and Mask2former[1].
The input image sizes of our dataset are 512X512.

For SOLOv2[7], we use stochastic gradient descent
(SGD). The base learning rate is 0.005 with multistep learn-
ing rate scheduler at fixed steps and decay of 0.0001. Data
augmentation is performed as flips, and scale sampling from
image sizes [400,460,480,512]. Batchsize is 8 images.

For Mask2former[1], the optimizer is AdamW, with a
step learning rate scheduler. The base learning rate is
0.0001 with decay of 0.9 and 0.95 fractions of total train-
ing iterations by factor of 10. For data augmentation, ran-
dom scale sampling is performed from range 0.3 to 2.0, fol-
lowed by fixed size crop to 512X512. For inference, we
threshold detection scores with a threshold of 0.5. Batch
size is 8 images. Note that for Mask2former + earlyfusion
with Bézier data, we first generate Bézier data on shapes in
an offline manner without the ImageNet background. We
aim to see if using Bézier curve information on shapes only,
has any direct effect. Results are reported in main paper.
Lack of compute resources currently makes it infeasible to
run Bézier detection online on images with random back-
grounds during training. Examples of Bézier data are shown
in Fig 5.

All models are trained until training convergence is
reached.

6.2. Qualitative Results

In the main report, Fig 3 shows results on both seen and
unseen objects. Here we show results on solely unseen ob-
jects, as we are very interested in domain transfer. We are
motivated by these set of results, because in cases where
there are no CAD models, use of deep learning segmenta-
tion architectures is highly important for contour extraction.
We show our visualizations in Figures 6 and 7.

7. 3D Reconstruction
We use Adam optimizer, with base learning rate of

0.0001 and beta decays of 0.9, 0.999. The loss function
we use is Binary Cross Entropy(BCE) Loss instead of Neg-
ative Log Likelihood which is used in the original paper
3DR2N2 [2]. In our experiments, this loss converges better
and provides more stable training. The batch size ranges
from 6 to 12, depending on input image and output voxel
sizes. Training is performed until convergence.



Figure 5. Example Bézier masks, processed on rendered images with no clutter, are shown in the left columns. The original images are
shown in the right columns.

References

[1] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask trans-
former for universal image segmentation. 2022.

[2] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction. In Proceed-
ings of the European Conference on Computer Vision (ECCV),
2016.

[3] Simon Christoph Stein, Markus Schoeler, Jeremie Papon, and
Florentin Worgotter. Object partitioning using local convexity.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 304–311, 2014.

[4] M. B. Clowes. On seeing things. Artif. Intell., 2:79–116, 1971.

[5] David A. Huffman. Realizable configurations of lines in pic-
tures of polyhedrat. 2013.

[6] Jitendra Malik. Interpreting line drawings of curved objects.
International journal of computer vision, 1(1):73–103, 1987.

[7] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-
hua Shen. Solov2: Dynamic and fast instance segmenta-
tion. Advances in Neural information processing systems,
33:17721–17732, 2020.

[8] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019.



Figure 6. Poor Qualitative results for Mask2former + earlyfusion on unseen data.



Figure 7. Good Qualitative results for Mask2former + earlyfusion on unseen data.


