
– Supplementary Material –
Learning 3D Human Pose Estimation from Dozens of Datasets using a
Geometry-Aware Autoencoder to Bridge Between Skeleton Formats

István Sárándi Alexander Hermans Bastian Leibe
RWTH Aachen University

{sarandi,hermans,leibe}@vision.rwth-aachen.de

Abstract

In this supplementary material, we provide additional
qualitative results, as well as details about implementation,
data processing and evaluation. We also provide two addi-
tional ablations (training length and batch norm configura-
tion) and a derivation for the claim that ℓ1 regularization
of the affine-combining autoencoder leads to a reduction in
negative weights and hence near-convex combinations.

S1. Additional Qualitative Results

Similar to the qualitative results shown in the main paper,
Figures S2, S3, and S4 show further predictions for a variety
of images. It can clearly be seen that the model with sepa-
rate heads without consistency regularization creates rather
inconsistent skeleton predictions, whereas fine-tuning with
our ACAE regularization significantly improves the consis-
tency. Furthermore, these figures show that the resulting
models display excellent in-the-wild performance, even on
challenging poses, or in suboptimal lighting conditions.

S2. Training Details

Learning Rate. Our learning rate schedule is shown in
Fig. S1. The learning rate starts at 2.12e-4 and exponen-
tially decays by a factor of 3 over 92% of training, then
drops by a factor of 10 and then further decays exponen-
tially by a factor of 3 until the end of the initial training.

The fine-tuning phase uses two different learning rates.
We perform a warm restart on the last layer (the predic-
tion head) in order to ensure that the regularization loss can
take effect, without disrupting the already mostly converged
weights of the backbone. For the head, we follow a simi-
lar recipe as in the initial training, but we perform the large
learning rate drop at 50% of the fine-tuning phase. For the
backbone, we repeat the last, decaying segment of the initial
schedule.
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Figure S1: Learning rate schedule.

Loss Details. We make minor adjustments to the Me-
TRAbs model [5], which we use as the basis of our ex-
periments. In [5], the authors perform internal supervi-
sion on the output of a 2D heatmap head and a 3D heatmap
head. Instead, we simplify this and only use the absolute
pose output for supervision, i.e., the 2D projection loss and
the mean-relative loss are computed on this single, absolute
output. This makes the implementation cleaner when more
losses are added for consistency regularization or student-
teacher latent matching, etc., since the model can be treated
as a single-output black box.

The weak supervision loss for 2D-annotated examples
only consists of the 2D projection loss. For this, we do not
specifically predict skeletons according to the skeleton for-
mats of the 2D datasets. Instead, the prediction is derived by
averaging the corresponding 3D joint predictions for every
output skeleton format. In other words, for the calculation
of the 2D weak loss, we consider our prediction for the left
shoulder to be the average of all the left shoulder joints in
every skeleton format that we use.

We use λproj = 1 and λabs = 0.1 and scale the weak-
supervision-loss by a factor of 0.2.

The absolute loss Labs is only turned on after 5000 steps
(also in fine-tuning, for consistency), similarly with the
teacher loss. In some datasets the absolute distance to the
person can be very large (e.g., JTA, SAIL-VOS, ASPset).



Here the absolute loss would overwhelm the total loss, so
we scale down the absolute Z component to a maximum
effective distance of 10 m for loss computation.
Batch Composition. In Tab. S1, we specify the number of
examples from each dataset per batch. This is based on the
total number of examples in each dataset but not linearly,
as we oversample smaller datasets compared to their size,
in order to provide more diverse supervision to the model.
For batch generation, we set up one queue per dataset that
iterates over epochs of that dataset, then we interleave the
streams and chunk it into batches (as opposed to indepen-
dently sampling each batch).
Initialization Details. We initialize with ImageNet-
pretrained weights. For the RN50 experiment in Table 4
(SOTA), we use ResNet50V1.5 as implemented in PyTorch,
ported to TensorFlow, along with the ImageNet weights,
which we found to be superior to the ones provided with
TensorFlow.

We precisely control the random seeds, which guaran-
tees that bitwise equal batches are fed to each training run,
improving comparability.
Implementation Details. We use TensorFlow 2.9 with
Keras, CUDA 11.4 and CuDNN 8.2.4 for the implemen-
tation. Training takes about 2 days with the EffV2-S back-
bone and about 6 days with EffV2-L on a single Nvidia A40
GPU (48 GB) in mixed FP16/FP32 precision.

S3. Data Processing Details
Where missing, we obtain person bounding boxes with

YOLOv4 [1] and person segmentation with DeepLabv3 [2].
Examples with implausible bone lengths are removed to
avoid training on erroneous annotations. We use all cam-
eras of 3DHP, and all HD cameras of CMU-Panoptic (and
all sequences with labels). We further calibrated all cam-
eras of BML-MoVi that did not have calibration provided
in the dataset, and use all of them in training (based on pose
predictions from an earlier version of our model). We use
200k composited images for MuCo-3DHP, generated with
the official Matlab script.

S4. Evaluation Details
We evaluate all 24 SMPL joints for 3DPW, and all 17

joints for 3DHP and MuPoTS. In case of 3DPW, the entire
dataset is used for testing. For 3DHP we use the official
split, for H36M the most common split from the literature,
i.e. subjects S9 and S11 are used for testing.

For MuPoTS, we evaluate the matched poses. As we use
the same YOLOv4 detector in all our experiments, we have
94.6% recall in all of our experiments (hence the matched-
pose results are directly comparable). For our main evalu-
ations, in each benchmark, we simply calculate the average
metrics over all metric-scale poses.

Table S1: Batch composition for the experiments with the
three different levels of dataset combinations. Each mini-
batch consists of 96 examples with 3D labels and 32 with
2D labels.

Dataset name Small Medium Full
Real images with markerless MoCap

MuCo-3DHP 32 9 6
CMU-Panoptic – 9 7
AIST-Dance++ – 9 6
HUMBI – 7 5
MPI-INF-3DHP – 5 3
RICH – 7 4
BEHAVE – – 3
ASPset – – 4
3DOH50K – – 3
IKEA ASM – – 2

Real images with marker-based MoCap
Human3.6M 32 9 4
TotalCapture – 5 3
BML-MoVi – – 5
Berkeley-MHAD – – 3
UMPM – – 2
Fit3D – – 2
GPA – – 4
HumanSC3D – – 1
CHI3D – – 1
Human4D – – 1
MADS – – 2

Synthetic images
SURREAL 32 8 5
3DPeople – 6 4
JTA – 5 3
HSPACE – 5 3
SAIL-VOS – 7 5
AGORA – 5 3
SPEC – – 2
Real images with 2D annotations (weak supervision)
COCO 8 8 8
MPII 8 8 8
PoseTrack 8 8 8
JRDB 8 8 8

In Table 4 (SOTA comparison) of the main paper, we use
the more complex standard evaluation metrics. That is, for
MuPoTS, here we use bone rescaling, normalized skeletons,
and averaging is performed first per sequence and the final
value is the average of per-sequence averages. In this, and
also other details, we follow the same protocols as [5] (e.g.,
which joints to evaluate).
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S5. Additional Ablations

Training Length. In Tab. S2, we study the effect of the
length of training on the final model performance. Clearly,
longer training can further improve the results and espe-
cially the correct pose score improves. Do note that ev-
ery new line doubles the number of training steps, so this
is expensive. Further, with long trainings we noted that
training in 16-bit floating point (FP16) precision is unsta-
ble, as the activations tend to grow out of the representable
range. The cause of this was that the convolutional ker-
nels of the backbone grow in scale during gradient descent,
since. Since they are always followed by BatchNorm in
EfficientNetV2, the weight scale has no impact on the net-
work output (though it has an effect on the effective learn-
ing rate [4]). We mitigated the problem by applying a max-
norm constraint on the convolutional kernels to keep them
from growing without bound. Some numerical instability
remains in case of very long trainings, the cause of which
needs more investigation. Tab. S3 shows that further ex-
tending the fine-tuning phase can bring minor performance
benefits. For reasons of practicality, we chose 400k training
steps and 40k fine-tuning step as the default setting for all of
our experiments in the main paper, albeit one could achieve
slightly better results with longer schedules.
Ghost BatchNorm. In Tab. S4 we show an ablation on
using Ghost BatchNorm [3, 6]. We compare three op-
tions: normal BatchNorm, Ghost BN where the 96 3D an-
notated examples are normalized as one group and the 32
2D-labeled ones as another, and Ghost BN with ghost batch
size 16. While the differences are not very large, the Ghost
BN options tend to perform better. This is probably due to
the discrepancies in BatchNorm statistics among datasets.
Inference-Mode BatchNorm Fine-Tuning. Furthermore,
Tab. S4 also demonstrates that, when using Ghost BN, it is
important to fine tune the network at the end in inference
mode. By inference-mode fine-tuning, we mean that the
BN layers use the stored, fixed statistics for normalization
instead of the usual training mode of using the statistics of
the current minibatch. In Ghost BN, the stored statistics
may be suboptimal, since they are updated based on parts
of the batch, instead of the overall batch statistics. A final
fine-tuning in “inference mode” allows the network to fine-
tune its weights to the setting that it will be used in during
inference (i.e., to adapt the weights to work well with the
stored statistics).

S6. Effects of L1 Regularization in the ACAE
We point out in the main paper that using ℓ1 regulariza-

tion on the weight matrices of the affine-encoding autoen-
coder results both in sparsity and fewer negative weights.
Here we elaborate on this connection. Since the weights
produce affine combinations, they sum to one as specified

in Eq. 1-2 in the main paper.

J

∑
j=1

wenc
l,j = 1 (1)

L

∑
l=1

wdec
j,l = 1. (2)

We can partition the weights to negative and non-
negative ones.

wenc
l,+ = ∑

j ∶ wenc
l,j
≥0

wenc
l,j (3)

wenc
l,− = ∑

j ∶ wenc
l,j
<0

wenc
l,j (4)

wenc
l,+ +wenc

l,− = 1, (5)

and analogously for the decoder weights. Now, the ℓ1
penalty (sum of absolute values) can be written as

ℓ1(wenc
l,⋅ ) =

J

∑
j=1

∣wenc
l,j ∣ = (6)

= wenc
l,+ −wenc

l,− = (7)

= (1 −wenc
l,−) −wenc

l,− = (8)

= 1 − 2 ⋅wenc
l,− = (9)

= 1 + 2 ⋅ ∣wenc
l,− ∣ . (10)

This means that the ℓ1 penalty is equivalent to penalizing
the absolute sum of the negative weights.

When all weights are non-negative, we get convex com-
binations. In other words, the ℓ1 regularization in the ACAE
encourages constructing close-to-convex combinations be-
sides sparsity.
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Table S2: Ablation for the length of training.

MuPoTS-3D 3DPW MPI-INF-3DHP Human3.6M

MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑

Initial, separate-skeleton model
100k 88.6 62.4 67.8 60.0 65.9 47.0 81.5 65.3 66.3 51.2 82.2 71.7 47.7 37.6 91.9 86.6
200k 87.3 60.3 68.3 65.1 63.1 44.6 82.6 69.5 63.1 47.4 84.4 77.1 46.8 36.2 93.1 88.7
400k (default) 84.6 59.0 70.1 66.0 61.8 43.4 83.8 71.1 59.6 44.1 86.6 81.8 44.7 34.3 94.3 90.1
800k 82.9 57.8 70.5 69.8 61.7 42.6 83.7 73.1 58.8 42.9 87.3 83.0 43.0 33.2 94.8 91.4
1.6M 81.6 56.7 71.6 72.8 61.5 41.9 84.4 74.2 58.6 41.3 87.8 86.3 41.5 32.3 95.5 92.1

Fine-tuned with consistency regularization for 40k steps
100k 85.5 60.6 70.3 66.6 65.0 46.0 81.8 66.9 63.6 48.7 83.9 74.1 46.7 36.4 92.5 87.6
200k 84.2 59.2 70.8 70.4 63.4 44.3 82.7 69.9 61.4 46.3 85.4 79.1 46.7 35.1 93.3 88.6
400k (default) 81.8 57.8 72.5 72.9 61.5 43.0 84.0 71.9 59.2 43.6 86.6 82.7 45.2 33.3 94.4 90.1
800k 80.5 56.8 72.7 74.4 61.3 42.1 84.5 73.3 57.7 42.2 87.7 84.3 42.0 31.9 95.3 91.4
1.6M 79.7 56.1 73.3 76.6 60.6 41.7 84.7 74.5 58.6 41.1 87.8 86.6 41.1 31.2 95.7 92.2

Table S3: Ablation for the length of consistency-regularized fine-tuning with an initial training length of 400k steps.

MuPoTS-3D 3DPW MPI-INF-3DHP Human3.6M

MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑

20k 82.0 58.0 72.2 72.1 61.7 43.0 83.9 71.3 59.3 43.6 86.5 82.1 44.9 33.5 94.3 89.8
40k (default) 81.8 57.8 72.5 72.9 61.5 43.0 84.0 71.9 59.2 43.6 86.6 82.7 45.2 33.3 94.4 90.1
80k 81.6 57.8 72.4 73.2 61.4 42.9 84.1 72.1 58.4 43.2 87.2 82.9 44.5 33.3 94.6 90.1

Table S4: Ablation for Ghost Batch Normalization and inference-mode fine-tuning for 1000 steps.

MuPoTS-3D 3DPW MPI-INF-3DHP Human3.6M

MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑ MPJPE↓ PMPJPE↓ PCK100↑ CPS200↑

Initial, separate-skeleton model, with fine-tuning at the end with BN in inference mode
Normal BN 84.5 59.2 70.0 65.9 62.6 43.6 83.6 71.9 61.3 43.7 85.7 82.0 46.3 34.6 94.2 89.9
Ghost BN (3D/2D) 83.6 58.7 70.4 70.0 62.8 43.5 83.2 71.2 61.8 45.1 85.7 80.3 46.6 34.7 94.1 90.5
Ghost BN 16 84.6 59.0 70.1 66.0 61.8 43.4 83.8 71.1 59.6 44.1 86.6 81.8 44.7 34.3 94.3 90.1

Initial, separate-skeleton model, without fine-tuning at the end with BN in inference mode
Normal BN 84.2 59.1 70.4 66.4 62.6 43.6 83.5 71.9 60.4 43.4 86.1 82.3 45.9 34.4 94.2 89.8
Ghost BN (3D/2D) 88.2 63.5 66.7 62.0 67.3 47.5 80.9 68.0 66.3 49.0 81.7 77.4 50.8 40.4 90.7 87.7
Ghost BN 16 85.8 60.4 69.0 63.5 63.4 44.7 83.2 70.8 59.8 44.3 86.3 81.8 45.4 35.7 93.6 89.6

Fine-tuned with consistency regularization for 40k steps, with fine-tuning at the end with BN in inference mode
Normal BN 83.3 58.5 70.9 73.2 63.1 43.7 83.4 71.8 60.5 43.4 85.9 82.7 46.0 33.5 94.4 89.9
Ghost BN (3D/2D) 81.2 57.7 72.5 74.0 62.2 43.0 83.7 72.3 60.5 44.4 86.1 80.9 46.2 33.7 94.1 90.6
Ghost BN 16 81.8 57.8 72.5 72.9 61.5 43.0 84.0 71.9 59.2 43.6 86.6 82.7 45.2 33.3 94.4 90.1

Fine-tuned with consistency regularization for 40k steps, without fine-tuning at the end with BN in inference mode
Normal BN 83.1 58.7 71.3 72.9 62.8 43.5 83.5 71.7 59.6 43.2 86.4 82.9 45.5 33.4 94.5 89.9
Ghost BN (3D/2D) 89.1 64.6 66.4 62.1 68.5 49.4 79.6 65.2 73.4 52.9 76.4 70.9 58.4 43.4 85.7 82.7
Ghost BN 16 84.0 60.0 70.7 69.7 63.3 45.3 82.7 69.4 63.2 45.7 83.8 80.1 49.0 36.6 92.2 88.3
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(a) Separate skeleton prediction (b) With our proposed ACAE regularization
Front view Right side view Front view Right side view

Figure S2: A qualitative result comparison between a model trained without (a) and with our ACAE regularization (b). It can
clearly be seen that our regularization leads to improved skeleton consistency.

S5



(a) Separate skeleton prediction (b) With our proposed ACAE regularization
Front view Right side view Front view Right side view

Figure S3: A qualitative result comparison between a model trained without (a) and with our ACAE regularization (b). It can
clearly be seen that our regularization leads to improved skeleton consistency.
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(a) Separate skeleton prediction (b) With our proposed ACAE regularization
Front view Right side view Front view Right side view

Figure S4: A qualitative result comparison between a model trained without (a) and with our ACAE regularization (b). It can
clearly be seen that our regularization leads to improved skeleton consistency.
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