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1. Autoencoder architecture
The autoencoder is deterministic and takes as input a

RGB image of size h × w, and produces a RGB image (3
channels) and an error estimation map of the same size (1
channel).

The encoder and decoder structures in the proposed
model are computed dynamically using as input the size
(height h and width w) of the input frames of the dataset.
The number of latent variables produced by the encoder is
fixed to 16.

We use a fully convolutional autoencoder architecture,
which appears to be more robust to overfitting than architec-
tures including fully connected layers or locally connected
layers. We add two fixed positional encoding channels as
inputs to all layers of the encoder and the decoder, one chan-
nel coding for the horizontal coordinates, the other one for
the vertical coordinates .

The encoder is a sequence of blocks composed of a con-
volution layer with kernel size 5, stride 3 and padding equal
to 2, followed by a group normalization layer and a CELU
nonlinearity layer. The generator is a symmetric sequence
of blocks composed of transpose convolution layers with
kernel size 5 and stride 3 and padding equal to 2 followed
by group normalization and a CELU nonlinearity, except for
the last layer where the transpose convolution layer is fol-
lowed by a sigmoid to generate the final image. The number
of layers of the encoder and the decoder is then equal to 5
or 6 depending on the image size (assuming that the max-
imum of the image height and image width is in the range
200 − 1000). The number of channels per convolutional
layer is fixed according to Table 1, depending on the image
size and the background complexity.

These channel distributions are motivated by the fact that
a larger number of parameters is required in the generator in
order to handle complex backgrounds, but that we have ex-
perimentally observed that a large number of channels in the
last layer of the encoder and the first layer of the decoder in-
creases the risk of overfitting on foreground objects, so that
reducing this number for long training schedule is necessary

to improve the robustness of the auto-encoder with respect
to the risk of overfitting. For example, we have measured
that increasing the numbers of channels in the last hidden
layer of the encoder and first hidden layer of the decoder to
160 and 256 leads to de 2,3 % degradation of the average
F-Measure on the CDnet dataset.

For non-video dataset experiments, which handle small
images, we use a smaller stride, set to 2 instead of 3. The
autoencoder architectures for 64× 64 images (ShapeStacks
and ObjectRooms datasets) and 128×128 images (Clevrtex
dataset) are described in Table 2 and 3:

2. Additional implementation details
The datasets and preprocessing codes for CLEVRTEX,

Shapestacks and ObjectsRoom were downloaded from the
following public repositories:

• https://www.robots.ox.ac.uk/˜vgg/
data/clevrtex/

• https://ogroth.github.io/
shapestacks/

• https://github.com/deepmind/multi_
object_datasets

3. Additional image samples
We provide in figures 1 − 7 additional samples of back-

ground reconstruction and foreground segmentation ob-
tained using the proposed model.



Table 1. Number of channels for each layer of the encoder and decoder (excluding positional encoding input channels)

background
complexity

image
size
max(h,w)

Encoder Decoder

simple 200-405 (3,64,160,160,32,16) (16,32,256,256,144,4)
simple 406-1000 (3,64,160,160,160,32,16) (16,32,256,512,256,144,4)
complex 200-405 (3,64,160,160,16,16) (16,16,640,640,144,4)
complex 406-1000 (3,64,160,160,160,16,16) (16,16,640,1280,640,144,4)

Table 2. autoencoder architecture for 64× 64 images

Encoder

Layer Size Ch Stride Norm./Act.
Input 64 3

Conv 5× 5 32 64 2 GroupNorm/CELU
Conv 5× 5 16 160 2 GroupNorm/CELU
Conv 5× 5 8 320 2 GroupNorm/CELU
Conv 5× 5 4 160 2 GroupNorm/CELU
Conv 4× 4 2 16 2 GroupNorm/CELU
Conv 2× 2 1 16 1 GroupNorm/CELU

Decoder

Layer Size Ch Stride Norm./Act.
Input 1 16

Conv Transp 2× 2 2 16 1 GroupNorm/CELU
Conv Transp 4× 4 4 640 2 GroupNorm/CELU
Conv Transp 5× 5 8 1280 2 GroupNorm/CELU
Conv Transp 5× 5 16 640 2 GroupNorm/CELU
Conv Transp 5× 5 32 144 2 GroupNorm/CELU
Conv Transp 5× 5 64 4 2

Sigmoid 64 4

Table 3. autoencoder architecture for 128× 128 images

Encoder

Layer Size Ch Stride Norm./Act.
Input 128 3

Conv 5× 5 64 64 2 GroupNorm/CELU
Conv 5× 5 32 320 2 GroupNorm/CELU
Conv 5× 5 16 640 2 GroupNorm/CELU
Conv 5× 5 8 640 2 GroupNorm/CELU
Conv 5× 5 4 320 2 GroupNorm/CELU
Conv 4× 4 2 16 2 GroupNorm/CELU
Conv 2× 2 1 16 1 GroupNorm/CELU

Decoder

Layer Size Ch Stride Norm./Act.
Input 1 16

Conv Transp 2× 2 2 16 1 GroupNorm/CELU
Conv Transp 4× 4 4 320 2 GroupNorm/CELU
Conv Transp 5× 5 8 640 2 GroupNorm/CELU
Conv Transp 5× 5 16 1280 2 GroupNorm/CELU
Conv Transp 5× 5 32 640 2 GroupNorm/CELU
Conv Transp 5× 5 64 144 2 GroupNorm/CELU
Conv Transp 5× 5 128 4 2

Sigmoid 128 4
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Figure 1. Examples of background reconstruction and foreground segmentation on the CDnet 2014 dataset produced using the proposed
model and comparison with PAWCS and SuBSENSE
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Figure 2. Examples of background reconstruction and foreground segmentation on the CDnet 2014 dataset produced using the proposed
model and comparison with PAWCS and SuBSENSE
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Figure 3. Examples of background reconstruction and foreground segmentation on the LASIESTA dataset produced using the proposed
model and comparison with PAWCS and SuBSENSE
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Figure 4. Examples of background reconstruction and foreground segmentation on the BMC 2012 dataset produced using the proposed
model and comparison with PAWCS and SuBSENSE
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Figure 5. Examples of background reconstruction and foreground segmentation on Clevrtex dataset
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Figure 6. Examples of background reconstruction and foreground segmentation on ObjectsRoom dataset
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Figure 7. Examples of background reconstruction and foreground segmentation on ShapeStacks dataset


