
Unsupervised multi-object segmentation using attention and soft-argmax

Supplementary Material

1. Hyperparameter values

The hyperparameter values used for the proposed model
are listed in Table 1.

2. Pseudo-code for objects encoder and de-
coder

The full encoding and rendering process is described in
Algorithms 1 and 2.

3. Additional implementation details

The glimpse convolutional generator is described in Ta-
ble 2.

Synthetic datasets and preprocessing codes were down-
loaded from the following public repositories:

• https://www.robots.ox.ac.uk/˜vgg/
data/clevrtex/

• https://ogroth.github.io/
shapestacks/

• https://github.com/deepmind/multi_
object_datasets

• https://github.com/applied-ai-lab/
genesis.

The Segformer pretrained weights were downloaded
from the following link:

https://huggingface.co/nvidia/mit-b3

The architecture of the U-net implemented for the abla-
tion study is described in Table 3. It contains a sequence of
downsample blocks which output feature maps of decreas-
ing sizes, a center block which takes as input the feature
map produced by the last downsample block, and upsample
blocks, which take as input both the output of the previous
upsample or center block and the feature map of the same
size produced by corresponding downsample block.

• A downsample block is composed of a convolutional
layer with stride 2 and kernel size 4, with batch nor-
malization and CELU, followed by a residual convolu-
tional layer with stride 1 and kernel size 3 with batch
normalization and CELU.

• The center block is composed of a convolutional layer
with stride 1 and kernel size 3 with batch normalization
and CELU.

• An upsample block is composed of a residual con-
volutional layer with stride 1 and kernel size 3 with
batch normalization and CELU, followed by a trans-
pose convolutional layer with stride 2 and kernel size
4, with batch normalization and CELU.

4. Additional image samples
Additional image samples are provided in Figures 1-6.



input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

Figure 1. Examples of segmentation predictions on CLEVR test dataset



input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

Figure 2. Examples of segmentation predictions on CLEVRTEX test dataset



input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

Figure 3. Examples of segmentation predictions on ObjectsRoom test dataset



input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

Figure 4. Examples of segmentation predictions on ShapeStacks test dataset (using a model without transformer)



input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

Figure 5. Examples of segmentation predictions on CAMO test dataset using a model trained on CLEVRTEX only



input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

input image

ground truth
segmentation

image 
reconstruction

predicted
segmentation

Figure 6. Examples of segmentation predictions on OOD test dataset using a model trained on CLEVRTEX only



Table 1. Hyperparameter values

hyperparameter description notation value

Background model pretraining:
batch size 128
learning rate 2.10−3

number of background model training iterations:
- datasets with fixed backgrounds (CLEVR) 2500
- datasets with complex backgrounds (CLEVRTEX, ShapeStacks,ObjectsRoom) 500000

Foreground model training:
batch size 64
learning rate 4.10−5

Adam β1 0.90
Adam β2 0.98
Adam ϵ 10−9

number of foreground model training iterations 125000
number of steps of phase 2 (CT scenario) 30000
number of steps of learning rate warmup phase 5000
number of steps of pixel entropy loss weight warmup phase Npixel 10000
initial value of background activation before training α0 e11

dimension of zwhat dzwhat
32

pixel entropy loss weight λpixel 1.10−2

minimum value of inverse scaling factor smin 1.3
maximum value of inverse scaling factor smax 24
dimension of inputs and outputs of transformer encoder dT 256
number of heads of transformer encoder layer 8
dimension of feedforward transformer layer 512
number of layers of transformer encoder 6



Algorithm 1: Encoding
Input: input image X
Output: object latents {zwhat

k , xk, yk, sk, αk}1≥k≥K

// feature and attention maps generation
(Φ, A1, .., AK) = SegformerForSemanticSegmentation(X)
for k ← 1 to K do
Ak(i, j) = Softmax(Ak)(i, j) =

eAk(i,j)∑
i,j eAk(i,j)

end
// computation of positions and feature vectors before transformer refinement
for i← 1 to w∗, j ← 1 to h∗ do

x(i) = 2 i−1
w∗−1 − 1 ; y(j) = 2 j−1

h∗−1 − 1

end
for k ← 1 to K do

x0
k =

∑
i,j x(i)Ak(i, j) ; y0k =

∑
i,j y(j)Ak(i, j)

ϕ0
k =

∑
i,j Φ(i, j)Ak(i, j)

end
// transformer refinement of positions and feature vectors
(xk, yk, ϕk)1≥k≥K = LinearProjection(TransformerEncoder(LinearEmbedding((x0

k, y
0
k, ϕ

0
k)1≥k≥K)))

// latent computations
for k ← 1 to K do

xk = clamp(xk,min = −1,max = 1) ; yk = clamp(yk,min = −1,max = 1)
(sk, αk, z

what
k ) = ϕk

sk = smin + (smax − smin)σ(sk)
αk = eαk

end
Output: {zwhat

k , xk, yk, sk, αk}1≥k≥K

Algorithm 2: Rendering

Input: object latents {zwhat
k , xk, yk, sk, αk}1≥k≥K , background image L0, background mask M0 = 1, learned

background activation α0

Output: Image reconstruction X̂
// Obtain the object appearance ok and segmentation mask mk

for k ← 1 to K do
ok,mk = GlimpseGenerator(zwhat

k )
end
// translation and scaling using a spatial transformer network (STN)
for k ← 1 to K do

Lk = STN(ok, xk, yk, sk)
Mk = STN(mk, xk, yk, sk)

end

// occlusion computations
for k ← 0 to K do

wk = αkMk∑K
i=0 αiMi

end
// combination of image layers

X̂ =
∑K

k=0 wkLk;
Output: X̂



Table 2. glimpse generator architecture
64x64 images

Layer Size Ch Stride Padding Norm./Act.
Input 1 dzwhat

Transp Conv 2× 2 2 64 2 0 GroupNorm(4,64) /CELU
Transp Conv 4× 4 4 32 2 1 GroupNorm(2,32)/CELU
Transp Conv4× 4 8 16 2 1 GroupNorm(1,16)/CELU
Transp Conv 4× 4 16 8 2 1 GroupNorm(1,8)/CELU
Transp Conv 4× 4 32 4 2 1

Sigmoid 32 4

128x128 images

Layer Size Ch Stride Padding Norm./Act.
Input 1 dzwhat

Transp Conv 2× 2 2 128 2 0 GroupNorm(8,128) /CELU
Transp Conv 4× 4 4 64 2 1 GroupNorm(4,64)/CELU
Transp Conv4× 4 8 32 2 1 GroupNorm(2,32)/CELU
Transp Conv 4× 4 16 16 2 1 GroupNorm(1,16)/CELU
Transp Conv 4× 4 32 8 2 1 GroupNorm(1,8)/CELU
Transp Conv 4× 4 64 4 2 1

Sigmoid 64 4

Table 3. U-net architecture (ablation study)

Layer Ch Stride Padding Norm./Act.
Input 3

Conv 3× 3 80 1 1 BatchNorm /CELU
Downsample block 128
Downsample block 192
Downsample block 256
Downsample block 256
Downsample block 256

Center block 256
Upsample block 256
Upsample block 256
Upsample block 192
Upsample block 128
Upsample block 80

Conv 3× 3 with skip connection dΦ 1 1 BatchNorm /CELU
Residual Conv 3× 3 dΦ 1 1

Conv 1× 1 dΦ 1 1


