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1. Introduction
As pointed out in the main paper, this supplementary ma-

terial addresses and expands certain aspects of our work
which could not be presented due to space limitations. In
section 2, we demonstrate a theoretical upper bound to the
sign imbalance. In section 3, we investigate and highlight
what are the differences between the presented aggregation
strategies to obtain O∗, (O∗ is necessary to produce I in
order to compute our auxiliary sign imbalance loss). In sec-
tion 4, we explicitly present different ways to aggregate I
to one or two scalar values. We also integrate the exper-
imental part by further analyzing the experimental data to

provide a more comprehensive evaluation of the sign imbal-
ance, and by presenting the results with bar plots. In section
5, we report more details on the design of the Kaleidoscope
dataset. In section 6, we report further testing and training
data statistics related to the experiments in the paper that are
useful to better identify possible training bias. In section 7,
the approximation of Tlr, Tud with T180◦ is further inves-
tigated. In section 8, we provide a more in depth analysis
of the full-frame results, vertical and horizontal sign imbal-
ance assessment. In section 9, we report the results on the
thresholded groundtruth motion magnitude.

We also provide more information on the sign imbal-
ance mitigation using our auxiliary loss. In section 10,
we provide the results for the preliminary experiments with
FlowNetC. In section 11, we report more details for the ex-
periments with RAFT, already reported in the main paper,
but here explained in greater detail.

2. On Relating the sign imbalance and EPE
Example. Suppose that the considered frames are of size
7 × 7 pixel and that frame F

′

n and F
′′

n are two identical
white frames with a dark pixel in the center of the frames.
Let the single and double quotes superscript represent two
scenarios of motion, namely, scenario I and scenario II. A
pictorial representation of the two identical frames is shown
in Fig. 1 (a). In scenario I the dark pixel moves up by 2
pixels and to the right by 3 pixels, whereas, in scenario II
the dark pixel moves down by two pixels and to the left by
three pixels. These two scenarios of motion are depicted in
Fig. 1 (a) and (b).

In reference to scenario I let:

• vector g
′

be used to represent the motion of the pixel

• vector o
′

be used to represent the estimated motion of
the pixel with a hypothetical optic flow estimator
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• vector e
′

be used to represent the difference between
the estimated motion with the said estimator and the
actual motion, this is to say e

′
= g

′ − o′ . This vector
is going to be named the error

In the above mentioned vectors the prime symbol is used as
a superscript to indicate scenario I of motion. As for vec-
tors related to scenario II of motion a double prime sym-
bol is used as a superscript. The above mentioned vectors
for scenario I, and scenario II, are depicted in Fig. 1 (c).
It is worth noticing that g

′′
= −g′ . One might expect to

have o
′′

= −o′ . If o
′′

is not similar to −o′ then this in-
dicates an imbalance behavior of the optic flow estimator.
The larger the difference between o

′′
and −o′ the larger the

said imbalance. Let o? = −o′′ . Fig. 1 (d) and (e) depicts
o
′
, o?, and the vector i where i = o

′ − o?. Vector i rep-
resents the sign imbalance of the optic flow estimates for
the two scenarios of motion. Furthermore, Fig. 1 (e) repre-
sents the vector g

′
and e

′
, in addition to the vector e?, where

e? = g
′ − o? = −e′′ The color code used in Fig. 1 (c), (d)

and (e), is as follows: vectors g, e and i are depicted in
green, blue and red color, respectively.

2.1. Imbalance magnitude upper bound

In section 2 a general hypothetical estimator was consid-
ered. Let this generalization be used to evaluate a possible
upper bound to the sign imbalance vector magnitude. For
a given magnitude of imbalance ||i|| would it be possible
to find a relationship between the said value and ||e′ || and
||e?||?

Theorem 1 (Euclidean Sign imbalance and EPE relation
upper bound). Considering two generic opposite scenarios
of motion, scenario I obtained starting from two generic
input frames Fn, Fn+1, and scenario II generated starting
from T180◦(F

′
n), T180◦(F

′
n+1) and additionaly rotating the

produced OF, as:

o′ = o(Fn, Fn+1); (1)
o∗ = T180(o(T180◦(F

′
n), T180◦(F

′
n+1))). (2)

Equation 1 shows the OF for scenario I and eq. 2 shows the
OF for scenario II. Considering g′ the groundtruth vector
for scenario I, and e′ = g′ − o′,e∗ = g′ + o∗ the errors
respectively for scenario I and scenario II; the sign imbal-
ance vector associated to e′, e∗ is i = o + o∗. The Eu-
clidean sign imbalance is ||i||, the Euclidean norm of i. For
any pixel considered, the Euclidean sign imbalance ||i|| is
always lower or equal to the sum of the EPE of scenario I
and scenario II, ||e||, ||e∗||, as:

||i|| ≤ ||e′||+ ||e∗||. (3)

Proof. We prove the statement geometrically by consider-
ing the triangle with sides e′, e∗, i (similar to the one in Fig.

-e)). By applying the triangle inequality to the mentioned
triangle e′, e∗, i, the upper bound of ||i|| is defined as:

||i|| ≤ ||e′||+ ||e∗|| �. (4)

Equation 4 show that the Euclidean sign imbalance
is always lower or equal than the sum of the EPE
||e′||, ||e∗||.

And a consequence of theorem 1 is the statement in the
next corollary.

Corollary 1. Equation 3 considers a single pixel. The
triangle inequality also holds when applying this reason-
ing to the expected value (over a set of pixels P) of
||i||, ||e′||, ||e∗||, and noted as ||i||, ||e′||, ||e∗||. For the
monotonicity and linearity of the expected value the triangle
inequality can be extended as:

||i|| ≤ ||e′||+ ||e∗||. (5)

Equation 5 shows that eq. 3 can be generalized to the mean
of the set of pixels considered. Notably, if ||e′|| = ||e∗||,
then:

||i|| ≤ 2 · ||e′||. (6)

Equation 6 shows that in this scenario, the sign imbal-
ance upper bound becomes two times the EPE, on average.

3. Obtaining O∗

To evaluate the sign imbalance loss it is necessary to pro-
duce O∗. When testing the networks, O∗, is obtained by
two independent inference of the network. When training
the network, O∗, can be obtained similarly. However it is
important to maintain the backward computation graph for
differentiating during the backward pass. We here report
again the strategy involving multiple forward propagations
of the network before the backpropagation, to explain it to
a finer granularity.

Algorithm 1 Multiple forward propagations.

1: procedure TRAINING-ITERATION(Fn, Fn+1, G)
2: O = inference(Fn, Fn+1)
3: if FWDs => detach gradients.
4: Generate F 180◦

n , F 180◦

n+1

5: O180◦ = inference(F 180◦

n , F 180◦

n+1 )
6: O∗ = T180◦(O180◦)
7: Compute LE(O,G)
8: Compute LI (O,O∗)
9: L= LE+ β· LI

10: if FWDg => L= L/2
11: Compute gradients
12: Update learnable weights



Figure 1: Two scenarios of motion of one dark pixel in two consecutive frames are shown in (a) and (b); (c) is to show for each
scenario of motion the actual motion of the dark pixel g, the estimated motion O, and the difference between the estimated
motion and the actual motion, this is to say the error e; (d) is to show the sign imbalance of the optic flow estimates for the
two scenarios of motion; (e) is to show the sign imbalance of the optic flow estimates in addition to the errors committed by
the estimator for the two scenarios of motion.

Referring to Algorithm 1, for every training iteration,
Fn, Fn+1, are forward propagated to obtain O. After that,
F 180◦

n , F 180◦

n+1 , are computed and forward propagated into
the same network to obtain O180◦ , and then 180◦rotated
again to obtain O∗. The sign imbalance loss is then com-
puted and the gradients are backpropagated w.r.t. the inputs.
The double forward propagation does not require to change
the network input size and can be applied to virtually any
learnt optical flow estimator.

Using the double forward propagation does not change
the architecture, however, the double inference before back-
propagation changes the operations to calculate the back-
ward graph. We use pytorch1 as deep learning framework.
Pytorch dynamic computation generates a backward com-
putation graph every time the model is forward propagated.
The backward computation graph is then populated once
the gradient is calculated by backpropagation. The chain
rule is used to calculate the gradient w.r.t. every learnable
weight for each operation in the network. Weights are up-
dated based on the gradient values and according to the op-
timizer. In these conditions, two scenarios are possible, i)
when adding the second forward propagation we could ei-
ther interrupt the backward gradient flow during on the dy-
namic graph second propagation (FWDs), or populate the
second dynamic graph with the gradient values (FWDg).

Figure 2, shows a simplified example of multiple for-

1www.pytorch.org/

ward propagations of the model before computing the gra-
dients. We use Fig. 2 to further explain the difference be-
tween FWDs and FWDg strategies. We assume f(x,w) to
be a differentiable function in the network and its output z
defined by a value x and learnable weight w. The node x
is the input value of the network dependant on the previ-
ous operations and states in the graph, finally L(g, o, o180)
is the loss function calculated at the output side. In 2-a) the
network generates o starting from Fn, Fn+1. In this step the
intermediate states are computed. In 2-b) the network gen-
erates o180 starting from F 180◦

n , F 180◦

n+1 . At step 2-c) (dashed
lines) the derivatives of the loss w.r.t. the input are com-
puted with the backpropagation algorithm: the derivatives
w.r.t. every element of the network are computed starting
from the output and using the chain rule, as in eq. 7, and eq.
8.

∂L(g, o, o180)

∂w
=
∂L(g, o, o180)

∂o

∂o(z)

∂z
...
∂f(x,w)

∂w
; (7)

∂L(g, o, o180)

∂w
=
∂L(g, o, o180)

∂o180
∂o180(z180)

∂z180
...
∂f(x,w)

∂w
.

(8)

As shown in Fig. 2 the network derivatives of the two
branches will display different numerical values for every
operation in the network, but will act on the same network
weights. Networks states and derivatives in case a) and b)
beside the learnable weight w, which is the same weight

www.pytorch.org/


Figure 2: Example of double forward propagation before gradient computation for a generic operation z = f(x,w) in the
network. Blue circles represent network internal inputs and functions, fine dotted pink circles represent the learnable weights.
In step a) the network is forward propagated starting from Fn, Fn+1, in b) the network is forward propagated starting from
F 180◦

n , F 180◦

n+1 , in c) (dashed grey boxes) the differentials are backpropagated starting from the last operation of the loss
function, to compute the derivatives for every state in the network. The dashed squares represent the derivatives calculated at
every operation in the network. In d) the learnable weight w is updated based on its calculated differential. The differential
of w is the accumulation of its differential in step a) and step b), the grey dashed arrow underlines this.

both in case a) and b). Equation 7 for case a), and, eq. 8 for
case b); are obtained by explicitly expanding the derivatives
as they are computed during step c). Given that both for-
ward passes act on the same weight w, the derivative stored
in w (dashed line) is the accumulation (the sum) of case a)
and case b), as show by the dashed line in Fig. 2. Finally,
in step d) the optimizer updates w. It can be noted that the

derivative used for the update step is given by the sum of the
derivatives of both the forward propagations. For simplic-
ity, assuming the weight w is updated with batch gradient
descent, as in eq. 9, the update step is dependant on the av-
erage of the gradients of the two forward propagations as in
eq. 10 for FWDg. On the contrary, when stopping the gradi-
ents during the second forward propagations, all the deriva-



tives in the second branch are set to zero as in eq. 11 and the
update step only depends on the first forward propagation,
whereas the second forward propagation is only used to ob-
tain O∗. From a practical perspective, this means that when
using the FWDg strategy, the total loss, or the learning rate
should be halved, as in eq. 10.

w = w − η ∂L(g, o, o
180)

∂w
(9)

w = w − η 1
2

(
∂f(x,w)

∂w
· ∂o(z)
∂z

· ... · ∂L(g, o, o
180)

∂o
+

+
∂f(x,w)

∂w
· ∂o(z

180)

∂z180
· ... · ∂L(g, o, o

180)

∂o180

)
(10)

w = w − η
(
∂f(x,w)

∂w
· ∂o(z)
∂z

· ... · ∂L(g, o, o
180)

∂o
+ 0 · ... · 0

)
(11)

4. Testing and Training metrics

The sign imbalance matrix I = O + O∗, is a two layer
matrix containing the pixelwise horizontal imbalance Iu
and vertical imbalance Iv . The matrices Iu and Iv repre-
sent the pixel-wise imbalance of the estimated horizontal,
and vertical displacement of the optical flow estimator, re-
spectively. A non-zero entry in these matrices indicate an
imbalanced behavior associated with the pixel in frame F

′

n,
at the same position of the non-zero entry. A positive value
indicates an over-estimate of the up-to-down, and left-to-
right, motion, while a negative value indicates the opposite.

Assuming P , the set of considered pixels, which for the
full frame statistics is: P = h · w, where h and w represent
O height and width. To quantify the sign imbalance behav-
ior over P a statistical mean measure could be used. We
choose the generalized mean, over the set of pixels. So, to
quantify the sign imbalance behavior of the estimated ver-
tical displacement of an optical flow estimator for a set of
pixels P the following equation could be used:

Iv =

 1

P
∑
∀p∈P

|iv(p)|m
 1

m

. (12)

In eq. 12, m determines the statistical mean, the value (P)
is the number of pixels in the set P , and iv(p) the verti-
cal imbalance for a pixel. The usage of the absolute value
for iv(p), in the above equation, imply that the direction of
over-estimation is neglected.

Different strategies can be used to aggregate I to one
meaningful scalar. Accordingly, the sign imbalance could
be calculated for every pixel using the L1 norm, or L2 norm,
and averaged using first or second order statistical mean,

respectively:

|I| = 1

2P
∑
∀p∈P

(|iu(p)|+ |iv(p)|) ; (13)

||I|| = 1

(P)
∑
∀p∈P

||i(p)||; (14)

Im=2 =
1

2

 1

P
∑
∀p∈P

|iu(p)|2
 1

2

+
1

2

 1

P
∑
∀p∈P

|iv(p)|2
 1

2

.

(15)

Equation 13 shows |I| the L1 loss averaged. Equation 14
shows ||I|| , the arithmetic mean of the per pixel Euclidean
distance, also used in the main paper. Equation 15 shows
Im=2, the sign imbalance averaged with statistical mean of
power m = 2. The value 2 in the denominator of eq. 13
and eq. 15, is to account for the vertical and horizontal
sign imbalance equally. When training the networks sign
imbalance metric is arbitrary, however, we prefer to weigh
the sign imbalance similarly to the training metric used for
the accuracy error e, which is commonly the EPE.

5. Kaleidoscope dataset generation
We compose Kaleidoscope by image formation. This

dataset contains exactly the same motion magnitude for
each direction, thus can be used for an unbiased evalua-
tion of the sign imbalance. Kaleidoscope OF is generated
by superimposing circles of different radii over both frames
Fn, Fn+1 on the same position, except for a constant drawn
from a Gaussian distribution representing the displacement,
for each circle. Each frame pair and OF is composed of
four repetitions of the same texture and motion. We refer to
each repetition as quadrant. In this paper, quadrant has the
same spatial meaning as in the Cartesian system, consider-
ing the origin to be located at the center of the frame, q1 is
the upper right quadrant, q2 the upper left quadrant, q3 is
the lower left quadrant and q4 is the lower right quadrant.

Texture density, motion distribution, object size, object
number and frame size are all parameterized. This allows
to generate a wide variety of samples. Nonetheless, the
motion has been constrained to avoid overlapping objects
in frame In and to avoid out of quadrant objects in frame
In+1. To guarantee statistical significance we have gener-
ated 1000 samples per dataset. The OF has been drawn from
a Gaussian distribution with zero mean and 60 px standard
deviation. Given the wide variety of samples that could be
generated even in these restricted conditions, to ensure a fair
comparison of different networks and to ensure results repli-
cability, the random seed has been fixed. Finally, different
background and foreground textures have been tested, re-
sulting in similar performance of the network if compared
to the “Lena” and “Goldhill” pair; which are the textures



used. The scripts used to generate this dataset will be avail-
able in the paper repository. Some visualizations are shown
in Fig. 3.

6. Testing and training datasets statistics
Table 1 summarize L1 and L2 motion magnitudes

|Gu|, |Gv|, ||G|| for the datasets used in this chapter. More-
over, it specifies the positive and negative amount of motion
ofGu, Gv , for the forward and backward optical flow (when
available). Finally, the same metrics are evaluated for the
training datasets FlyingChairs, FlyingChairs2, FlyingChair-
sOcc, FlyingThings. We note that for natural sequences,
the horizontal motion has always an higher magnitude com-
pared to the vertical motion. We also note that FlyingChairs
is more balanced than FlyingThings3D. FlyingThings3D
contains a larger motion magnitude to the left, and a larger
motion magnitude going downwards. Still referring to table
1, we note that when datasets provide forward and back-
ward optical flow, their Gu > 0, Gu < 0, Gv > 0, Gv < 0
values can show a small difference (e.g. FlyingChairs2), or
very large differences as for FlyingThings3D depending on
the mapping direction.

To evaluate the extent of sign imbalance for different dis-
placements range, we thresholded the groundtruth OF (G)
in regions of homogeneous motion. Table 4 P represent the
set of all pixels of the tested sequence; table 2, P is the set
of pixels within a certain magnitude range. Thresholds have
been chosen to uniformly cover the data displacement range
of the testing datasets. Based on the table 2 for the Sintel
row, we note that displacements in the range [0, 5[ px cover
' 55% of the moving pixels, [5, 20[ cover ' 27% of the
moving pixels, [20, inf[ cover ' 18% of the moving pix-
els. Thus, we chose to mask G using the same values. On
monkaa these thresholds uniformly splits the data.

The training dataset FlyingChairs also show a large num-
ber of pixels with low displacements, whereas FlyingTh-
ings3D show more pixels with a large displacement.

7. Approximating Tud, Tlr with T180

In this section we evaluate eq.(12) for m = 1, for the
horizontal and vertical direction, to obtain the mean of the
absolute values, Iu, Iv . We used two approaches to evaluate
Eq.(12), these are : 1) Tud to evaluate Iv and Tlr to evaluate
Iu ; 2) T180◦ to evaluate Iv and Iu. This should help under-
standing if the composition of Tud,Tlr, is equivalent to the
usage of T180◦ , to produce Iu, Iv .

Table 3 reports Iu, Iv for the transformations Tlr, Tud,
and T180◦ Ideally the columns Iv, Iu should display the
same values independently on the transformation used. For
readability we report the same results in Fig. 4, for Sintel fi-
nal. Referring to Fig.4 it can be noted that all networks can
well approximate the two transforms, with the only excep-

tion being Iu for IRR-PWC fine tuned on KITTI and RAFT
trained with mirroring fine tuned on the KITTI dataset R-
M’(K) where the sign imbalance difference is around the
20% of the sign imbalance magnitude Iu(Tlr). The results
for the Kaleidoscope dataset are similar, all networks can
well approximate Iv, Iu, beside IRR-PWC fine tuned on
KITTI, where the Iu shows a moderate difference.

Furthermore, referring to table 3, by evaluating the ra-
tio aeu = |Iv(Tud) − Iv(T180◦)| · 100/Iv(Tud) (and sim-
ilarly aev = |Iu(Tud) − Iu(T180◦)| · 100/Iu(Tud)) for all
the columns, it is possible to evaluate how well the esti-
mates obtained by the T180◦ rotation approximates the Tlr,
Tud transforms. Results show, that for all networks the ap-
proximation difference on Sintel clean, 8% for Iu and 3%
for Iv , for the final pass is 10% for Iu and 4% for Iv . For the
Kaleidoscope dataset the approximation error is 8% for Iu
and 4% for Iv and is 9% for Iu. The largest deviation in this
case is given by RAFT fine tuned on Sintel, for which the
approximation error ratio is 55% and 67% respectively on
Sintel clean and final. However when tested on the image
formation sequence the error is ≈ 5%. The second highest
approximation difference on Sintel is given by R-M’(K),
(fine tuned on KITTI), which is also the most imbalanced
network on the image formation datasets. To conclude, with
a good approximation it can be said that the T180◦ transform
approximates the Tlr, Tud transforms.

8. Full frame evaluation
We evaluate eq. 12 for m = 1 to obtain the mean of the

absolute values, Iu, Iv , ||I||. Results are evaluated on the
full frame for various algorithms for estimating the optical
flow. We refer to the table 3 for Iu, Iv . We refer to table
4 for the evaluation of ||I||. Given the large amount of in-
formation contained in the tables, results are also presented
with bar graphs. Figure 5 reports ||I|| and EPE for all for
Sintel final, Fig. 7 reports Iu, Iv , Fig. ?? reports the EPE
for the Kaleidoscope dataset.

8.1. Vertical and Horizontal Sign Imbalance

By referring to Tab. 3 and Fig. 7 we can evaluate Iu, Iv
to check if the models show higher vertical or horizontal
imbalance. We use the results on the Kaleidoscope dataset
to evaluate if the models show different imbalance values
depending on motion direction. In fact, as shown in Sec. 6
Sintel|Gu| > |Gv|, whereas the Kaleidoscope dataset show
exactly the same layerwise L1 magnitudes |Gu| = |Gv|.

By looking at Fig. ?? we note that Iu, Iv show very simi-
lar values for all the models tested, beside models fine tuned
on KITTI. In fact, IP(K), R(K) show Iu >> Iv . When eval-
uated on Sintel the difference is higher, however as noted,
this testing dataset is unbalanced. Finally, if frame pairs and
groundtruth optical flow are rotated anticlockwise of 90◦,
for all networks tested on Sintel the sign imbalance show



(a) Fn (b) Fn+1 (c) G

(d) Fn (e) Fn+1 (f) G

(g) Fn (h) Fn+1 (i) G

Figure 3: Visualization of three frame pairs and OF drawn from the Kaleidoscope dataset.

an increase of Iu and decrease of Iv (results not shown for
brevity).

9. Masked regions evaluation

We here evaluate how the sign imbalance varies based on
the groundtruth motion magnitude. To do that we masked
the OF O in different regions based on the groundtruth mo-
tion magnitude ||G||, and evaluate the sign imbalance in
these regions. In this section, P is the set of pixels within
a certain magnitude ||G||, in the range 0 ≤ ||G|| < 5,
5 ≤ ||G|| < 20, ||G|| ≥ 20 and referred in this section
as small, medium and large displacements. The regions
thresholds are chosen, based on the considerations of Sec.

6. Results are presented in Tab. 5 for Sintel, and with bar
graphs in Fig. 8 and 9 for Sintel final. The bar graph in
figure 8 shows the sign imbalance evaluated on Sintel final
thresholded regions. Displacements masked in the range
[0, 5[, [5, 20[, [20, inf [ are presented respectively with bars
of darker shades of blue with no texture, with sparse white
lines, light blue with finer line density. The bar graph in 9
is normalized over the thresholded grountruth magnitudes.
Thus, showing ||I||

||G||
, the extent of sign imbalance over the

groundtruth motion, for each region of with a certain motion
magnitude.

The bar graph in Fig. 8 shows that in all cases re-
gions with a larger groundtruth motion magnitude presents



Table 1: Groundtruth motion statistics per motion direction and orientation. L1 and L2 motion magnitudes. FWD and BCK
refer to the presence of forward and backward optical flow.

Data FWD BCK Gu > 0 Gu < 0 Gv > 0 Gv < 0 |Gu| |Gv| ||G||
FlyingChairs x 7.09 -7.25 7.12 -7.36 11.11 7.1 7.16
FlyingChairs2 x 7.16 -7.27 7.18 -7.51 10.14 6.45 6.55
FlyingChairs2 x x 7.16 -7.39 7.3 -7.6 10.24 6.5 6.64
FlyingChairs2 x 7.17 -7.5 7.42 -7.68 10.34 6.55 6.73

FlyingChairsOcc x 7.34 -7.14 7.39 -7.32 11.16 7.09 7.21
FlyingChairsOcc x x 7.28 -7.28 7.39 -7.4 11.23 7.14 7.25
FlyingChairsOcc x 7.23 -7.43 7.39 -7.48 11.3 7.18 7.29
FlyingThings3D x x 34.62 -45.39 34.2 -22.27 53.19 40 28.24
FlyingThings3D x 33.63 -32.94 21.94 -21.03 43.22 33.28 21.48
FlyingThings3D x 35.62 -57.54 46.09 -23.55 63.14 46.72 35

Kaleidoscope x 29.51 -29.51 29.51 -29.51 7.7 5.45 5.45
Sintel x 12.11 -9.66 7.42 -6.5 13.5 10.08 6.66

Kitti2015 x 38.25 -34.98 15.1 -3.81 33.00 11.35 36.7
Hd1k x 10.67 -11.64 6.94 -2.14 8.98 7.88 3.39

Monkaa x x 17.6 -18.03 4.95 -4.92 19.44 17.16 4.75
Monkaa x 22.43 -11.81 5.44 -5.07 19.83 17.4 5.05
Monkaa x 10.66 -22.36 4.47 -4.76 19.05 16.92 4.44

Table 2: Thresholded groundtruth motion mean magnitude and pixel counts ratio.

||G|| [px] Pixel Distribution [%]
data FWD BCK [0, 5[ [5, 20[ [20,inf[ [0,5[ [5,20[ [20,inf[

FlyingChairs x 1.58 10.76 39.1 50.03 32.46 17.51
FlyingChairs2 x 1.45 10.63 38.17 52.35 31.99 15.66
FlyingChairs2 x x 1.45 10.63 38.56 52.3 31.9 15.8
FlyingChairs2 x 1.45 10.63 38.94 52.26 31.81 15.93

FlyingChairsOcc x 1.54 10.77 38.4 49.4 32.68 17.92
FlyingChairsOcc x x 1.55 10.78 38.48 49.25 32.71 18.05
FlyingChairsOcc x 1.55 10.78 38.56 49.09 32.73 18.18
FlyingThings3D x x 3.06 11.74 69.36 10.72 38.92 50.35
FlyingThings3D x 3.09 11.85 69.75 9.64 38.41 51.95
FlyingThings3D x 3.04 11.63 68.95 11.8 39.44 48.76

Kaleidoscope x 0.06 12.7 58.3 83.16 4.75 12.09
Sintel x 1.65 10.45 54.51 54.95 27.15 17.9

Kitti2015 x 0.08 11.76 63.99 20.10 26.07 53.83
Hd1k x 1.19 10.59 35.79 55.11 30.73 14.16

Monkaa x x 1.73 11.06 51.09 39.15 31.36 29.49
Monkaa x 1.73 11.06 51.71 39.14 31.34 29.52
Monkaa x 1.74 11.05 50.47 39.16 31.38 29.46

a larger sign imbalance. For all networks beside R-M’(S),
the sign imbalance on Sintel final for high displacements
is higher than 5 px, ( approx 10% of the groundtruth mag-
nitude), as pointed in Fig. 9. When normalized, low and
medium displacements are more imbalanced relatively to
the groundtruth motion magnitude. For medium displace-
ments the sign imbalance is often around 1 px, or the 20%
of the groundtruth motion. Smaller displacements show a
lower imbalance, ||I|| ≈ 0.3px. However, small displace-

ments show the highest sign imbalance over groundtruth
magnitude ratio; small displacements are highly unbal-
anced, up to 60% the groundtruth testing motion.

The bar graph in Fig. 9 shows, for all networks trained
on almost any dataset, that the network imbalance is never
lower than 10% of ||G|| (excluding the models fine tuned
on the testing set, R’(S), R-M’(S) and IP(S)). On average,
all networks trained on FlyingChairs present an higher im-
balance compared to fine tuning on FlyingThings. When
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Figure 4: bar graphs showing the approximation of T180◦ ,Tlr, Tud when evaluating Iu, Iv on Sintel final. The bar graphs
color coding is blue with ascending lines for Iu, red with ascending lines for Iv; T180◦ transformation is noted by darker
tones and double lines, whereas Tlr, Tud are noted by lighter tones and single lines. The abscissa shows the model name
and training data, the ordinate displays Iv, Iu measured in pixels. T180◦ can well approximate Tlr, Tud for all networks.
RAFT-M fine tuned on KITTI (R-M’(K)) shows the highest difference between Iu(T180◦) and Iu(Tlr)



Table 3: Transforms approximation evaluated on Sintel. All networks can well approximate the sign imbalance Iu, Iv , RAFT
and IRR-PWC fine tuned on KITTI show the greatest approximation difference. RAFT fine tuned on Sintel display the
highest approximation error aeu.

Sintel
clean final

Iu aeu Iv aev Iu aeu Iv aev
Label T180◦ Tlr % T180◦ Tud % T180◦ Tlr % T180◦ Tud %
DF(C) 1.07 1.1 2.4 1.03 1 3.28 1.32 1.36 2.7 1.3 1.33 2.7
FC’(C) 1.82 1.63 11.8 1.69 1.7 0.5 2.21 1.98 11.5 2.15 2.14 0.8

FC-M’(C) 1.46 1.34 9.2 1.38 1.3 4.36 1.79 1.66 7.4 1.65 1.58 4.2
Ro’(C) 0.79 0.81 2.6 0.75 0.8 6.8 1.56 1.43 9.1 1.46 1.38 6.1

R-M’(C) 0.76 0.76 0.4 0.75 0.7 1.75 1.49 1.38 7.6 1.15 1.2 3.4
R’(C) 0.98 0.98 0.3 0.92 1 5.23 1.88 1.9 1.2 1.61 1.59 1.5
Ro(C) 0.78 0.71 9.9 0.81 0.8 0.78 1.51 1.38 9.6 1.43 1.4 1.9

R-M’(C2) 0.71 0.7 1.6 0.69 0.7 8.19 1.19 1.1 7.6 1.02 0.96 6.8
R-M’(C2f) 0.75 0.71 5 0.75 0.7 4.58 1.28 1.15 10.7 1.31 1.22 7.8

IP(Co) 0.89 0.91 2.4 0.75 0.7 6.93 1.46 1.35 8 1.2 1.12 7
G(T) 0.51 0.48 7.4 0.4 0.4 6 0.93 0.86 8.4 0.7 0.69 2
IP(T) 0.65 0.64 2.5 0.51 0.5 2.94 0.99 0.96 4 0.68 0.75 9.8

Ro’(T) 0.71 0.76 6.4 0.44 0.5 4.2 1.07 1.04 3.7 0.74 0.75 1.1
R-M’(T) 0.55 0.56 1.7 0.41 0.4 1.67 0.97 1.01 3.4 0.66 0.69 3.8

R’(T) 0.88 0.82 7 0.47 0.5 1.12 1.05 0.97 8.4 0.75 0.74 1.2
Rs(T) 0.91 0.82 10.8 0.69 0.7 4.96 1.23 1.14 7.5 0.87 0.86 0.9
Ro(T) 0.6 0.57 4.6 0.44 0.5 3.41 1.01 1.02 0.8 0.72 0.78 8

R-M’(Tf) 0.69 0.69 0 0.41 0.4 5.17 1.05 0.96 9.1 0.68 0.63 7.6
R-M’(C2-T) 0.56 0.62 10.2 0.4 0.4 6.48 0.9 0.86 5.1 0.73 0.7 3.4

IP(S) 0.68 0.65 3.7 0.55 0.6 0.95 0.91 0.81 11.9 0.74 0.68 8.6
Ro(S) 0.48 0.31 55 0.4 0.4 1.01 0.79 0.47 66.5 0.69 0.7 1.7

R-M’(S) 0.39 0.34 14.1 0.3 0.3 4.84 0.49 0.53 6 0.42 0.46 9
R’(S) 0.76 0.73 3 0.56 0.5 3.5 1.47 1.35 8.5 1.08 0.99 9
IP(K) 6.08 5.69 6.9 2.57 2.5 1.43 5.13 4.29 19.8 2.19 2.32 5.7

R-M’(K) 3.02 2.35 28.8 1.98 2 1.13 4.48 3.15 42.4 2.93 2.84 3.4
R’(K) 4.11 4.21 2.3 2.35 2.5 7.29 6.68 6.21 7.5 3.54 3.47 1.9
Ro’(K) 3.33 3.56 6.4 1.92 1.8 5.49 5.05 4.82 4.7 2.68 2.55 4.8

MEAN 1.22 1.15 8.1 0.86 0.9 3.79 1.72 1.55 11.1 1.25 1.23 4.6

networks are fine tuned on FlyingThings, the sign imbal-
ance is reduced on average by 40% its value when trained
on FlyingChairs. Referring to Fig. 8 it can be noted that
large displacements sign imbalance is noticeably higher for
FlyingChairs w.r.t. FlyingThings. At a closer look this also
holds for medium and low displacements. This can be better
observed in Fig. 9. When normalizing the sign imbalance
over the groundtruth, it can be noted that low displacements
sign imbalance is drastically reduced of 50% (compared
to its value on FlyingChairs), for all displacements range.
However, it is not possible to directly compare FlyingChairs
and FlyingThings3D because FlyingChairs do not provide
backward optical flow. Referring to Tab. 5 by evaluating,
IP(Co) R-M’(C2), and IP(T), R-M’(C2-T), we can more ac-
curately evaluate the effect of fine tuning on FlyingThings.

By comparing R-M’(C2), R-M’(C2f), we notice that the
two networks show to the same imbalance and same EPE
for all the thresholds. Also R-M’(C) shows similar perfor-
mance, however it displays an higher imbalance on Sintel
final. However, these result show that the penalty on Sintel
final is not due to the lack of forward and backward optical
flow of FlyingChairs.

Finally, we note that the sign imbalance mitigation pro-
vided by training FlyingChairs2 does not lead to better per-
formance after fine tuning on FlyingThings. This is shown
by comparing R-M’(T) and R-M’(C2-T) (Tab. 5). Retrain-
ing on FlyingChairs2 on forward and backward optical flow
does not further reduce the sign imbalance if compared to
fine tuning on FlyingChairs as R-M’(T) and R-M’(C2-T)
show the same imbalance.
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Figure 5: Full frame Sintel final results. Sign imbalance and EPE are reduced when fine tuning on FlyingThings3D. Fine
tuning on KITTI leads to largely unbalanced models.
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Figure 6: RAFT Full frame results on Sintel final, for different training datasets. Training on forward and backward optical
flow does not mitigate the sign imbalance significatively.



Table 4: Full frame results on Sintel and on the image formation datasets. Yellow highlighting is used to show the effect of
mirroring, green highlighting is used to show the effect of training on forward and backward optical flow. Mirroring partially
mitigates the sign imbalance, whereas training on forward and backward optical flow has a limited effect.

Sintel Kaleidoscope
clean final

Label EPE ||I|| EPE ||I|| EPE
DF(C) 3.85 1.66 4.93 2.06 5.07
FC’(C) 4.57 2.77 5.88 3.45 4.6

FC-M’(C) 4.42 2.24 5.72 2.72 4.52
Ro’(C) 2.19 1.22 4.24 2.39 1.41

R-M’(C) 2.19 1.2 4.39 2.1 1.41
R’(C) 2.25 1.49 4.36 2.74 1.59
Ro(C) 2.15 1.27 4.44 2.35 1.43

R-M’(C2) 2.15 1.11 3.5 1.75 1.51
R-M’(C2f) 2.14 1.19 3.7 2.08 1.46

IP(Co) 2.34 1.3 3.96 2.09 3.66
G(T) 1.3 0.73 2.73 1.32 1.26
IP(T) 1.87 0.92 3.46 1.35 2.66

Ro’(T) 1.58 0.95 2.83 1.47 1.13
R-M’(T) 1.42 0.78 2.73 1.33 1.08

R’(T) 1.54 1.13 2.8 1.46 1.16
Rs(T) 2.13 1.28 3.31 1.7 2.58
Ro(T) 1.47 0.84 2.71 1.4 1.14

R-M’(Tf) 1.43 0.91 2.71 1.39 1.18
R-M’(C2-T) 1.45 0.77 2.75 1.32 1.18

IP(S) 1.91 0.98 2.5 1.32 4.5
Ro(S) 0.74 0.7 1.19 1.17 1.14

R-M’(S) 0.83 0.55 1.36 0.73 1.14
R’(S) 0.56 1.05 0.87 2.05 1.25
IP(K) 7.41 7.07 8.07 6.05 8.46

R-M’(K) 3.95 4.03 5.6 5.93 3.99
R’(K) 4.63 5.24 6.91 8.27 4.36
Ro’(K) 4.43 4.27 6 6.23 4.01

When fine tuning RAFT on Sintel and testing on Sintel,
the sign imbalance is halved compared to only training on
FlyingThings, for small and medium displacements; large
displacements sign imbalance is reduced but not halved.
This can be observed by comparing IP(T) and R-M’(T),
and IP(S) and R-M’(S), in Fig. 8. However, the sign im-
balance in Fig. 9, seems noticeably reduced if compared to
its value when trained FlyingThings. If R-M’(T), R-M’(S)
are evaluated on a completely different dataset, the Kalei-
doscope dataset, R-M’(S) sign imbalance is not reduced,
but is slighlty worsen compared to R-M’(T), for large dis-
placements. Finally, as noted by IP(S) and R-M’(S), the
sign imbalance is dramatically worsen when fine tuning on
KITTI, accounting for over the 40 % motion magnitude for
all thresholds.

We evaluate the performance of different models trained
on FlyingChairs, DF(C), FC-M’(C), R-M’(C), IP(Co).
DDFlow show the lowest imbalance among the models

mentioned. RAFT is the second least imbalanced network,
but shows a noticeably larger sign imbalance for small dis-
placements, compared to DF(C), Fig. 9. We note that R-
M’(C2) and R-M’(C2F) show similar sign imbalance val-
ues as R-M’(C), Tab. 5. IRR-PWC shows the same trend
of RAFT. FlowNetC shows the highest imbalance, reaching
almost 60% of the motion magnitude in Fig. 9.

Models highlighted in yellow in Tab. 5 can be used to
evaluate the effects of the mirroring data augmentation, for
different networks and for different datasets. FlowNetC-
M, sign imbalance ||I||, is reduced of 2 px and the EPE
is reduced of 0.6 px, for large displacements. For medium
displacements the sign imbalance is reduced of 0.3 px and
the EPE is almost unchanged. For small displacements the
sign imbalance is reduced of 0.13 px and the EPE is un-
changed. Similar effects can also be observed for RAFT
trained on FlyingChairs and on FlyingThings. When fine
tuning on KITTI the sign imbalance is greatly reduced for
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Figure 7: Per axis L1 imbalance evaluated on Sintel final for all networks, on this test set there seems to be a slighly larger
horizontal imbalance. Fine tuning on KITTI lead to a higher horizontal imbalance.

large displacements when applying the mirroring data aug-
mentation. Similarly, when fine tuning on Sintel the sign
imbalance is significantly reduced for all displacements.

For all networks, the mean relative imbalance IR =
||I||/EPE for small and medium displacements is around
0.75 , for large displacements IR ≈ 0.65. This trend sug-
gests the sign imbalance is overall almost constant relatively
to the EPE, but also reduced of approximately 10% for high
displacements. However, if examined one by one, the net-
works show different trends. For all displacements range,
the relatively most imbalanced network is still RAFT fine
tuned on Sintel or KITTI, for which the sign imbalance is
higher than the EPE for low displacements. IRR-PWC fine
tuned on Sintel shows a relative imbalance of 0.60, not sub-
stantially higher than IRR-PWC trained on Things. IRR-
PWC shows also a relative lower imbalance if compared
to RAFT, mostly for smaller displacements. RAFT overall
presents a relative imbalance of 0.7 for displacements up
to 20 px and 0.50 for higher displacements. GMA shows
a higher relative imbalance for low displacements if com-
pared to RAFT. FlowNetC and FlowNetC-M shows an over-
all high imbalance for low displacements, but a moderate to
low imbalance for higher displacements. DDFlow, shows a
constant imbalance for all thresholds, obtaining the lowest
relative imbalance among all networks.

10. Preliminary experiments with FlowNetC
In this section we present the experiments carried with

FlowNetC. The section is structured as follows. Section
10.1 compares different aggregation strategies to obtainO∗.
Section 10.2 illustrates the hyperparameter tuning proce-
dure. Finally, Sec. 10.3 presents the results in terms of EPE
and sign imbalance mitigation. FlowNetC baseline training
details are the same used in the main paper.

10.1. Comparing different aggregation approaches

The impact on accuracy of the different strategies,
FlowNet-FWDs, and FlowNet-FWDg (as described in sec.
3) is evaluated by removing the mirroring data augmenta-
tion stage and setting β = 0 during training. Still referring
to table 7 it can be noted that in all cases for β = 0, the
changes introduced increase the EPE of roughly 0.2 px. The
effect is more severe on Sintel final.

10.2. Hyperparameter tuning

Results are reported for the most relevant values of β, for
models trained with the full schedule. As mentioned in Sec.
4 during training we match the accuracy training metric of
the model, which for FlowNetC is the EPE. Thus, in this
section the sign imbalance loss is based on ||I||.

Figure 10 shows the loss function for different β



Table 5: Full frame results on Sintel. Yellow highlighting is used to show the effect of mirroring, green highlighting is used
to show the effect of training on forward and backward optical flow. Mirroring partially mitigates the sign imbalance for
large displacements, particularly when fine tuining on Sintel and KITTI. Training on forward and backward optical flow has
a limited effect.

Sintel
clean final

0 ≤ ||G|| < 5 5 ≤ ||G|| < 20 ||G|| ≥ 20 0 ≤ ||G|| < 5 5 ≤ ||G|| < 20 ||G|| ≥ 20

label EPE ||I|| EPE ||I|| EPE ||I|| EPE ||I|| EPE ||I|| EPE ||I||
DF(C) 0.48 0.22 2.28 1.01 16.61 7.05 0.64 0.26 3.03 1.36 21.01 8.67
FC’(C) 1.08 0.9 3.36 2.24 17.16 9.28 1.31 1.06 4.3 2.95 22.33 11.57

FC-M’(C) 1.02 0.77 3.38 1.93 16.48 7.25 1.29 0.88 4.4 2.47 21.35 8.73
Ro’(C) 0.42 0.29 1.35 0.92 8.9 4.5 0.67 0.48 2.51 1.97 17.84 8.88

R-M’(C) 0.4 0.25 1.33 0.78 8.98 4.75 0.68 0.43 2.69 1.57 18.38 8.04
R’(C) 0.41 0.34 1.39 1.21 9.21 5.45 0.63 0.56 2.69 2.32 18.34 10.06
Ro(C) 0.41 0.29 1.31 0.95 8.76 4.76 0.71 0.53 2.52 1.91 18.79 8.59

R-M’(C2) 0.4 0.25 1.29 0.78 8.82 4.27 0.54 0.31 2.1 1.25 14.69 6.93
R-M’(C2f) 0.39 0.25 1.38 0.87 8.64 4.54 0.63 0.4 2.43 1.38 15.07 8.31

IP(Co) 0.35 0.2 1.25 0.74 10.13 5.54 0.57 0.3 2.44 1.51 16.66 8.5
G(T) 0.21 0.17 0.72 0.61 5.54 2.65 0.39 0.25 1.61 0.9 11.61 5.25
IP(T) 0.3 0.19 1.06 0.59 7.9 3.69 0.54 0.26 2.16 1.12 14.38 5.04

Ro’(T) 0.27 0.21 1.26 1.01 6.11 3.15 0.39 0.26 1.81 1.16 11.87 5.66
R-M’(T) 0.24 0.17 0.9 0.63 5.87 2.85 0.39 0.25 1.6 1.05 11.62 5.08

R’(T) 0.27 0.24 1.22 1.34 5.93 3.54 0.37 0.26 1.5 1.02 12.23 5.8
Rs(T) 0.36 0.26 1.32 0.99 8.81 4.87 0.48 0.32 2.07 1.52 13.84 6.22
Ro(T) 0.26 0.19 0.97 0.73 5.98 3.01 0.38 0.25 1.62 0.99 11.54 5.54

R-M’(Tf) 0.25 0.21 0.93 0.97 5.82 2.97 0.39 0.25 1.55 0.91 11.59 5.64
R-M’(C2-T) 0.26 0.17 0.98 0.67 5.81 2.78 0.38 0.23 1.56 0.91 11.8 5.31

IP(S) 0.24 0.15 0.86 0.52 8.63 4.2 0.3 0.18 1.13 0.64 11.33 5.85
Ro(S) 0.14 0.13 0.5 0.43 2.92 2.84 0.2 0.18 0.68 0.59 5.01 5.09

R-M’(S) 0.15 0.11 0.52 0.36 3.39 2.17 0.19 0.13 0.72 0.47 5.91 2.93
R’(S) 0.13 0.16 0.43 0.55 2.11 4.53 0.17 0.25 0.58 0.94 3.48 9.27
IP(K) 0.76 1.19 3.96 3.41 33.06 30.67 0.84 0.7 5.14 4.85 34.72 24.29

R-M’(K) 0.68 0.7 2.76 3.01 15.8 15.78 0.89 0.96 3.88 4.34 22.69 23.61
R’(K) 0.56 0.68 2.84 3.2 19.84 22.35 0.84 1.06 4.23 5.53 29.61 34.58

Ro’(K) 0.65 0.66 2.68 2.95 18.67 17.38 0.87 0.85 3.6 4.07 25.4 26.05

for FlowNetC-FWDs. Despite some minor differences,
FlowNetC-ST and FlowNetC-FWDg show similar trends.
Fig. 10 b) shows the loss function for the entire training,
Fig. 10 a) is a zoom in of the first 2000 iterations. Referring
to 10 b) the black thick line shows the EPE loss for β = 0,
the thin black line with X markers shows the sign imbalance
loss. Still referring to Fig. 10, for β = 0 it can be noted that
LE[1] ≈ 207 and LE[300k] ≈ 16, instead it can be noted
that the sign imbalance starts relatively low, LI[1] ≈ 37,
reaches its maximum at LI[850] ≈ 125 and decreases natu-
rally to LI[300k] ≈ 17. The highest imbalance is produced
when the EPE loss strongly decreases. Finally, with β = 0
it can be noted that EPE and sign imbalance loss present
similar values.

Still referring to Fig. 10 a), the effect of different β val-
ues on the sign imbalance training loss can be evaluated.

Overall, for all architectures, a slight imbalance reduction
is observed for β = 0.3, values between 0.3 > β > 0.6
further lower EPE and sign imbalance. The best trade-off
between imbalance and accuracy is found at β = 0.6 higher
values of β reduce imbalance but penalize accuracy due to
the dominance of the auxiliary loss backpropagated gradi-
ents. Moreover, as it can be observed in Fig. 10 b) β has
a damping effect on imbalance, higher values of beta re-
duce the initial imbalance loss overshoot amplitude, but on
the contrary large values of β delay the learning of the EPE
loss.

10.3. Results

In the remainder of this chapter results are presented with
tables. The tables show the EPE and the sign imbalance
||I|| on the full frame of the testing datasets. In the tables,
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Figure 8: L2 sign imbalance evaluated on masked regions of Sintel final for all networks. Higher displacements lead to a
higher sign imbalance. Fine tuning on FlyingThings3D considerably reduces the sign imbalance for all magnitudes.
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Figure 9: L2 sign imbalance evaluated on masked regions of Sintel final for all networks normalized over ||G||. FlowNetC is
largely imbalanced for small displacements. Training on FlyingThings3D reduces the normalized imbalance for all thresh-
olds.
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Figure 10: FlowNetC-FWDs training loss function for different values of β, the abscissa axis shows the (thousands) iterations,
the ordinate shows the loss values. Loss values are smoothed by moving average with a window of 50 samples in b) and of 5
samples in a). In b) the black thick line shows the EPE for β = 0, for clarity the EPE loss for other values of β is not shown
since the difference is minimal. The β values are 0.0, 0.3, 0.6, 0.9 and displayed respectively by black line with X marker,
green line with diamond marker, red line with cross marker, blue line with squared markers. The thinner lines represent the
value of imbalance loss. It can be seen that higher values of β lower the sign imbalance loss. a) first 2000 iterations zoom in.
Thicker lines refer to EPE loss, thin lines show imbalance loss, legend is the same as in b), for clarity loss values for β = 0.3
are not shown. Vertical dashed yellow lines show where the EPE loss starts decreasing for different β values. For β = 0 at
the sudden decrease of EPE loss corresponds a sudden increase of sign imbalance loss. The same effect is observed for other
values of β. β has a damping effect on the sign imbalance, larger values of β reduce imbalance loss overshoot but also shift
forward the optical flow learning process.

models marked with “x” use mirroring data augmentation,
whereas models marked with “-” do not use data augmen-
tation during training. The table cells are conditionally for-
matted, red highlighted cells are values showing a consid-
erable penalty compared to the baseline, green highlighted
cells are values considerably better than the baseline, cells
highlighted in yellow are values very close to the baseline.
Darker red color shades mean the error value is higher than
others, darker green color shades means the error is lower
than others, darker yellow shades mean the error is close to
the baseline, but showing slightly higher values.

Table 6 reports the results in terms of EPE and L2 imbal-
ance on Sintel for FlowNetC-FWDs and FlowNetC-FWDg.
Overall, higher values of β lead to an higher sign imbalance
mitigation. FlowNetC-FWDg with mirroring data augmen-
tation, for β = 0.3 obtains substantial gains on Sintel fi-
nal both in accuracy and sign imbalance mitigation, if com-
pared with FlowNetC-FWDg without mirroring data aug-
mentation for the same beta value. For FlowNetC-FWDg
and FlowNet-FWDs the optimal value of β is 0.3 to min-
imize the EPE and 0.6 to minimize the sign imbalance.
Overall, there is an EPE decrease only on Kaleidoscope,

whereas Sintel final suffer the highest EPE increase. On
the contrary, the sign imbalance is considerably reduced on
all the testing datasets. FlowNetC-FWDs and FlowNetC-
FWDg benefit of the mirroring data augmentation stage
only for β ≤ 0.3. Gains are both in terms of accuracy
and sign imbalance mitigation. Higher values of β penal-
ize the accuracy, especially on Sintel final. Finally, it is
important to note that due to the nature of convolutional
neural networks, different training runs lead to slight dif-
ferent results, during the experiments 0.1 px EPE or imbal-
ance difference can be observed when evaluating different
training runs of the same model with the same parameters.
The large value of EPE and sign imbalance loss is due to
the fact that for each upsampling FlowNetC layer, the EPE
loss for FlowNetC is summed for every pixel, at different
resolutions, resulting in a very large loss.



Table 6: FlowNetC trained on FlyingChairs results. Cell color coding is red for values showing higher EPE or imbalance
compared to the baseline, green for error values lower than the baseline. Darker color shades mean a larger deviation from
the baseline.

Sintel Kaleido-
clean final scope

Mir. beta EPE ||I|| EPE ||I|| EPE

base. - - 4.57 2.77 5.88 3.45 4.60
x - 4.42 2.24 5.72 2.72 4.52

ST

- 0 4.87 3.07 6.16 3.71 4.57
- 0.3 4.37 1.88 5.71 2.43 4.35
x 0.3 4.55 1.96 5.92 2.55 4.34
- 0.6 4.50 1.62 5.78 2.00 4.68
x 0.6 4.54 1.61 5.91 1.96 4.73
- 0.9 Not Converging

FWDS

- 0 4.72 2.97 6.17 3.80 4.44
- 0.3 4.73 2.21 6.14 2.72 4.29
x 0.3 4.54 2.07 6.01 2.55 4.09
- 0.6 4.62 1.95 6.01 2.41 4.34
x 0.6 4.76 1.89 6.18 2.27 4.23
- 0.9 4.75 1.64 6.06 2.00 4.93

FWDG

- 0 4.72 2.69 6.07 3.36 4.36
- 0.3 4.96 3.04 6.26 3.51 4.91
x 0.3 4.49 1.95 5.86 2.33 4.07
- 0.6 4.83 2.66 6.12 3.12 4.78
x 0.6 4.76 1.58 6.09 1.93 4.33
- 0.9 4.78 2.15 6.12 2.44 4.76

11. Experiments with RAFT

This section presents the experiments carried with
RAFT. Section 11.1 present the baseline values per train-
ing dataset. Section 11.2 present the evaluation of RAFT
trained on FlyingChairs, Sec. 11.3 presents the evaluation
of RAFT fine tuned on FlyingThings. Section 11.4 presents
the results when fine tuning RAFT on the target dataset. Fi-
nally, RAFT is trained on the error e using the L1-norm.
The experiments with RAFT are carried with L1 sign im-
balance loss, where not otherwise stated.

11.1. Baseline

Table 7 shows the performance of RAFT for different
training runs. The training runs are grouped by training set,
C refers to training on FlyingChairs and T refers to pre-
training on FlyingChairs and fine tuning on FlyingThings.
The mean and standard deviation of all training runs is also
shown. When modifying the batch size, the total number
of flow update iterations has been changed accordingly, to
maintain an equal total number of optical flow updates as
the baseline. The rows highlighted in yellow are used as
baselines for the EPE and the sign imbalance. Models are

considered to perform similarly to the baseline when their
computed EPE and sign imbalance do not diverge more than
two times the standard deviation computed in table 7.

By comparing the EPE and the sign imbalance values of
the baseline in table 7 for FlyingChairs and for FlyingTh-
ings, we note that the sign imbalance and EPE is consider-
ably reduced of around 0.8 px and 1.7 px respectively on
Sintel clean and final. The sign imbalance is also reduced
of 0.4 and 0.8 px respectively on Sintel clean and final. The
kaleidoscope dataset shows the lowest EPE and sign imbal-
ance reduction, which is around 0.3 px for both the EPE and
the sign imbalance.

11.2. FlyingChairs trained models comparison

Table 8 helps evaluating the effects of different β val-
ues, when different strategies, FWDs and FWDg, are used
to obtain O∗ during training. For β = 0, the baseline
and FWDg, FWDs models with input mirroring perform
equally, whereas FWDs without mirroring show a consid-
erably higher imbalance and a slightly higher EPE. Increas-
ing β reduces the sign imbalance ||I|| for all models on all
testing sets. Values of β ∈ [0.4, 0.6] minimize EPE and ||I||
on all testing sets. Higher values of β further reduce imbal-



Table 7: Baseline models trained and their average EPE and sign imbalance value in pixels.

Sintel Kaleido-
Clean Final scope

Model Mir. batch Data EPE ||I|| EPE ||I|| EPE
RAFT x 8 C 2.19 1.22 4.39 2.10 1.41
RAFT x 16 C 2.29 1.23 4.51 2.43 1.44
RAFT x 6 C 2.24 1.11 4.52 1.98 1.49
RAFT x 8 C 2.25 1.24 4.50 2.14 1.47

mean 2.25 1.20 4.48 2.16 1.45
std 0.04 0.06 0.06 0.19 0.03

RAFT x 10 T 1.42 0.77 2.75 1.36 1.15
RAFT x 5 T 1.43 0.79 2.72 1.33 1.08
RAFT x 5 T 1.38 0.79 2.67 1.36 1.23

mean 1.41 0.78 2.72 1.35 1.15
std 0.03 0.01 0.04 0.02 0.07

ance and EPE on Sintel, but slighlty increase the EPE on
the Kaleidoscope dataset. The EPE penalty on the Kaleido-
scope dataset is worsen when β increases. However, this is
sometimes in contrast with the results on Sintel. A notable
example is RAFT-FWDs for β = 1.6 (without mirroring)
which records the lowest EPE and sign imbalance on Sintel,
but also records a higher EPE on the Kaleidoscope dataset,
up to 0.8 px compared to the baseline. For this reason the
models in table 8 showing the highest imbalance mitiga-
tion but an EPE increase on Kaleidoscope, and the models
with values of beta leading to the lowest EPE independently
on the sign imbalance mitigation, have been tested on two
additional datasets: Monkaa and KITTI. Table 9 show the
results of this evaluation. As it can be noticed, no network
showing an EPE penalty in table 8 on Kaleidoscope, shows
a penalty on these additional datasets. On the contrary, on
this datasets these models perform similarly. Furthermore,
models trained with a higher β obtain better performance
compared to lower values of β. FWDg for β ∈ [0.4, 0.6]
perform worse than the baseline.

To evaluate the difference between allowing the gradient
during the second forward propagation (FWDg) or stop it
(FWDs) we refer to the models in table 8 labelled with an
“x”, meaning the training runs use mirroring data augmen-
tation. We note that FWDg and FWDs show similar trends,
but FWDg show a slightly higher imbalance reduction, and
an higher EPE penalty on Sintel clean and Kaleidoscope,
for the same β values. Additionaly, table 8 reports EPE and
sign imbalance values when RAFT-FWDs is trained with or
without mirroring training data augmentation. This should
help understanding if mirroring is still beneficial for the sign
imbalance and the EPE when applying the auxiliary loss.
We note that FWDs without mirroring leads to a consider-

ably lower EPE. This can be observed by comparing the two
strategies for values of β = 0.8 and β = 1.6, for these beta
values, the EPE gain is around 0.6 px when the mirroring
data augmentation is off. When the data augmentation is ap-
plied, the lowest EPE on Sintel final is around 4.07 px, and
is reached by β = 0.6 and β = 1.8. However the penalty
on Sintel clean is higher in the latter case. Both networks
show a similar penalty on the Kaleidoscope dataset.

We evaluated how different aggregation metrics can be
used during training on FlyingChairs. We tested the met-
rics described in Sec. 4, ||I|| and Im=2. Given that differ-
ent aggregation metrics lead to different loss function val-
ues, we tested the training on ||I|| for values in the range
β ∈ [0.001, 1]. As a result, we noticed that the training di-
verge after around 1000 iterations for all values of β. Differ-
ently, when plugging the statistical imbalance Im=2 during
training, different outcomes are observed. Table 10 reports
the converging training runs using Im=2. Overall for all the
β values there is an EPE penalty on Sintel clean and Kalei-
doscope; the EPE on Sintel final, instead, is considerably re-
duced. However, differently from all the other training runs
on this chapter, increasing β leads to unexpected outcomes.
For β = 0 and β = 0.2 there is an higher imbalance reduc-
tion is compared to β = 0.4. Furthermore, β = 0.2 records
the lowest sign imbalance among all the models trained on
FlyingChairs, however, this value of beta leads to a very
large EPE on Sintel clean and Kaleidoscope. β = 0.6 has
also a similar imbalance reduction, but show a considerably
lower EPE compared to β = 0.2.

11.3. FlyingThings trained models comparison

Table 11 compares different RAFT training runs, using
the models pretrained on FlyingChairs (table 8), to fine tune



Table 8: Evaluation of RAFT trained FlyingChairs for different aggregation strategies.

Sintel Kaleido-
Clean Final scope

Mir. β EPE ||I|| EPE ||I|| EPE
baseline x - 2.25 1.20 4.48 2.16 1.45

FWDS

- 0 2.22 1.59 4.67 3.42 1.48
- 0.2 2.22 1.47 4.39 2.45 1.54
- 0.4 2.18 1.18 4.26 2.24 1.49
- 0.6 2.21 1.00 4.22 1.86 1.44
- 0.8 2.16 0.79 3.92 1.52 1.66
- 1 2.18 0.78 4.07 1.27 1.63
- 1.2 2.24 0.61 4.06 0.99 1.83
- 1.4 2.32 0.48 3.88 0.93 2.25
- 1.6 2.28 0.46 3.77 0.72 2.20

FWDS

x 0 2.29 1.27 4.55 2.09 1.49
x 0.2 2.22 1.02 4.41 2.33 1.43
x 0.4 2.30 1.15 4.38 2.02 1.44
x 0.6 2.14 0.85 4.07 1.61 1.49
x 0.8 2.31 0.99 4.29 1.68 1.55
x 1 2.22 0.78 4.29 1.43 1.64
x 1.2 2.22 0.70 4.29 1.42 1.65
x 1.4 2.29 0.74 4.19 1.20 1.84
x 1.6 2.32 0.65 4.16 1.17 2.06
x 1.8 2.43 0.70 4.09 1.08 2.14

FWDG

x 0 2.22 1.24 4.47 2.05 1.41
x 0.2 2.18 0.99 4.45 1.99 1.47
x 0.4 2.21 0.87 4.53 1.64 1.53
x 0.6 2.23 0.93 4.29 1.47 1.64
x 0.8 2.21 0.68 4.22 1.49 1.76
x 1 2.29 0.66 4.11 1.14 1.88
x 1.2 2.39 0.85 4.25 1.35 2.03
x 1.4 2.40 0.48 4.23 1.14 2.40

on FlyingThings. The models listed use different strategies,
FWDs and FWDg. Referring to table 11 the column la-
belled with βC refers the value of β applied during the train-
ing on FlyingChairs, and similarly βT is the β used during
the fine tuning on FlyingThings.

Section 11.1 has shown that when fine tuning on Fly-
ingThings, the highest gain is on Sintel final, moderate im-
provements are noticed on Sintel clean and a small improve-
ment is observed on the Kaleidoscopoe dataset. Similar pat-
terns are shown in table 11 when the models are fine tuned
on FlyingThings3D with β > 0.

To evaluate what is the contribution of pretraining on
FlyingChairs and what is the loss function contribution on
FlyingThings, we trained the models pre-trained on Fly-
ingChairs with β ∈ [0.4, 0.8], on FlyingThings, using only
the mirroring data augmentation for the fine tuning stage.
Beside a slight EPE penalty on Kaleidoscope, the EPE is

unchanged. Instead, the sign imbalance is considerably re-
duced following the usual pattern, higher imbalance reduc-
tion on Sintel final, moderate reduction on Sintel clean and
Kaleidoscope.

Given the large search space for β when fine tuning on
FlyingThings, the heuristics used to choose which models
trained on FlyingChairs to fine tune onFlyingThings3D are
three. i) The first rule is picking the model showing the
lowest EPE and the highest imbalance mitigation, without
showing any EPE penalty on any of the tested datasets. ii)
The second rule is picking the model maximizing the sign
imbalance mitigation, also allowing small EPE increases
compared to the baseline. iii) The third rule is to weigh
imbalance and EPE loss equally, β = 1. These heuristics
have been applied to every strategy (FWDs, FWDg with
or without mirroring). Finally, for FWDs with mirroring
we additionaly evaluated the effects of halving β when fine



Table 9: Results on Monkaa and KITTI for certain networks trained on FlyingChairs showing a slight EPE penalty when
tested on Kaleidoscope.

Monkaa KITTI
clean final

Mir. β EPE ||I|| EPE ||I|| EPE ||I||
baseline x - 3.53 1.72 4.54 2.21 10.78 4.78

FWDS - 0.8 3.43 1.59 4.37 1.72 10.28 3.39
- 1.6 3.24 0.60 3.94 0.79 11.63 1.91

FWDS
x 0.6 3.45 1.36 4.39 1.72 9.57 3.33
x 0.8 3.53 1.38 4.40 1.65 9.67 3.16
x 1 3.31 1.09 4.23 1.34 10.09 3.43

FWDG
x 0.6 3.40 1.10 4.36 1.34 9.98 3.20
x 1 3.29 0.80 4.18 1.12 10.49 2.81
x 1.4 3.33 0.82 4.12 0.88 11.37 2.19

Table 10: Different aggregation metrics when training on FlyingChairs. * means RAFT has been trained on the statistical
imbalance for m = 2.

Sintel Kaleido-
clean final scope

Mir. β EPE I EPE I EPE
baseline x - 2.25 1.20 4.48 2.16 1.45

FWDs*

x 0.00 2.44 0.66 4.13 1.28 2.34
x 0.20 3.22 0.41 4.41 0.54 4.67
x 0.40 2.24 1.17 4.37 2.00 1.47
x 0.60 2.74 0.54 4.21 0.75 3.53

tuning on FlyingThings3D (compared to its value on Fly-
ingChairs). We also evaluated the effect of increasing β
during the fine tuning stage. The β values chosen can be
found in table 11.

By comparing all networks in table 8 and 11 we note that
fine tuning on FlyingThings3D shrinks the network perfor-
mance difference. Roughly, the per-strategy EPE standard
deviation of the network fine tuned, is always lower than
0.12 px, and the sign imbalance standard deviation is maxi-
mum 0.16 px (recorded on Sintel final for FWDg). Thus,
the performance gap between different values of beta is
squeezed if compared to training only on FlyingChairs. We
can compare the difference between stopping the gradient
and allowing the gradient on both forward propagations by
evaluating models trained with βT = 1 in table 11. The
training runs stopping the gradient, FWDs, (with or without
mirroring) perform very similarly, with the highest differ-
ence being of 0.11 px on the Kaleidoscope EPE. Letting
the gradient flow during the second forward propagation,
(FWDg), for β = 1, show the highest imbalance mitigation
on all the testing sets. For the same β, the difference be-
tween FWDs and FWDg on Sintel final and Kaleidoscope
is minimal (< 0.1 px). However, on Sintel clean the sign

imbalance is significatively reduced of more than 50% the
baseline value, but at the expense of an EPE increase of 0.2
px (≈ 15% increase) compared to FWDs.

Moreover, by comparing the models with gradient
stopped for β > 1 we note that the sign imbalance is sig-
nificantly reduced on Sintel final only for very large values
of β, (β = 1.6). However, similarly to FWDg for β = 1
the higher imbalance mitigation leads to an EPE penalty on
Sintel clean and Kaleidoscope. The models showing this
penalty have been tested on Monkaa and KITTI and do not
show an EPE penalty, beside for FWDs without mirroring
for β = 1.6. The results are shown in table 12. Secondly,
we note that pretraining on FlyingChairs with βC = 1 and
fine tuning with βT = 1.6, do not lead to a much differ-
ent performance if compared to fixing beta to 1.2 or 1.6.
On the other hand, by halving β to 0.5 when fine tuning
we notice an EPE reduction, but roughly a 0.2 px imbal-
ance increase. Furthermore, when beta is halved, the per-
formance are very similar to fine tuning models previously
trained on FlyingChairs on FlyingThings, by only applying
mirroring data augmentation. This means that for the men-
tioned model (FWDs with βC = 1.0, βT = 0.5) there is
not a significant gain compared to fine tuning on FlyingTh-



Table 11: Results on FlyingThings3D for different RAFT training runs. A noticeable sign imbalance reduction is obtained
when fine tuning for β ≥ 1

Sintel Kaleido-
C T clean final scope

Mir. βC βT EPE ||I|| EPE ||I|| EPE

baseline

x - - 1.41 0.78 2.72 1.35 1.15
x 0.4 - 1.45 0.62 2.69 1.04 1.24
x 0.6 - 1.44 0.58 2.83 0.91 1.27
x 0.8 - 1.43 0.51 2.69 0.85 1.27
x 1.40 - 1.48 0.74 2.67 1.32 1.18

FWDS

x 0.6 0.6 1.49 0.56 2.68 0.90 1.26
x 1 0.5 1.44 0.60 2.66 0.91 1.24
x 1 1 1.49 0.47 2.71 0.69 1.29
x 1 1.6 1.54 0.42 2.76 0.74 1.40
x 1.2 1.2 1.45 0.55 2.72 0.67 1.36
x 1.6 1.6 1.53 0.49 2.77 0.54 1.51

FWDS
- 0.6 0.6 1.50 0.44 2.87 1.04 1.24
- 0.8 0.8 1.56 0.51 2.72 0.81 1.35
- 1 1 1.51 0.53 2.75 0.69 1.38
- 1.6 1.6 1.68 0.41 2.81 0.48 1.64

FWDG x 0.4 0.4 1.45 0.49 2.68 0.82 1.27
x 1 1 1.63 0.34 2.75 0.60 1.39

Table 12: Testing on Monkaa and Kitti. The models tested are the ones trained on FlyingThings3D, showing a large imbalance
mitigation but a small EPE penalty on Kaleidoscope. Almost all models trained with high β do not show an EPE penalty on
Monkaa and KITTI.

Monkaa KITTI
C T clean final Clean

Mir. βC βT EPE ||I|| EPE ||I|| EPE ||I||
baseline x - - 2.35 0.83 3.10 0.93 4.96 1.83

FWDS x 1.00 1.00 2.41 0.47 3.10 0.57 5.06 1.10
x 1.60 1.60 2.52 0.40 3.19 0.52 5.67 1.03

FWDG x 1.00 1.00 2.45 0.36 3.13 0.49 5.67 0.91

ings3D without the additional loss function.

To sum up, when fine tuning the models on FlyingTh-
ings, there is not a large performance difference between
different values of beta, if compared to the results on Fly-
ingChairs. Moreover, the models trained with by letting the
gradient propagate, further reduce the sign imbalance, com-
pared to the models trained by stopping the gradient. In fact,
the best model for imbalance mitigation is FWDg for β = 1
which can reduce the sign imbalance more than two times
if compared to the baseline, on all the testing datasets.

11.4. Fine tuning comparison

Based on the considerations of Sec. 11.2 and 11.3 we
fine tuned raft on Sintel and KITTI for β = 1. If we observe
an EPE penalty, we halve β during the last training stage.
Table 13 show the results of fine tuning FWDs on Sintel and
KITTI. Fine tuning on Sintel considerably reduces the sign
imbalance with a slight EPE penalty. Halving beta during
fine tuning limits the sign imbalance mitigation, but do not
show an EPE penalty on any datasets. Fine tuning on KITTI
with β = 1 dramatically reduces the sign imbalance. As it
can be noticed the sign imbalance goes from almost 6 px to
just 1.66 px on Sintel final, similar results are also observed



on the clean pass. The loss function also benefit the EPE on
all datasets, beside on Kaleidoscope.



Table 13: Results of fine tuning RAFT-FWDs on Sintel and on KITTI. Fine tuning on KITTI for β = 1 drastically reduce the
sign imbalance.

Sintel Kaleido-
C T S K clean final scope

Fine Tune Mir. βC βT βS βK EPE ||I|| EPE ||I|| EPE

Sintel
x - - - - 0.83 0.55 1.36 0.73 1.14
x 1 1 0.5 - 0.86 0.39 1.39 0.55 1.18
x 1 1 1 - 0.92 0.31 1.48 0.45 1.31

KITTI
x - - - - 3.95 4.03 5.60 5.93 3.99
x 1 1 1 0.5 4.15 3.73 5.86 5.18 3.94
x 1 1 1 1 4.07 1.37 4.94 1.66 5.00


