
Weakly-Supervised Optical Flow Estimation for Time-of-Flight
Supplementary Material

Michael Schelling, Pedro Hermosilla, Timo Ropinski
Ulm University, Germany

1. Contents
This supplementary material provides additional infor-

mation about our method in Sec. 2 and Sec. 3 and further
details on how the experiments were conducted in Sec. 4.
Finally, we show additional qualitative results in Sec. 5.

Our code, trained networks and the additional scenes to
expand the CB-dataset [11], containing moving objects, are
available at https://github.com/schellmi42/
WFlowToF.

2. Phase Unwrapping of the ToF Loss Function
In this section we provide more information on the phase

unwrapping of the gradients of the ToF loss function LToF ,
which is given through

s = sign(m̂0 − m̂2) (1)

d̂ =
c

4πf
arctan

(
m̂3 − m̂1

m̂0 − m̂2 + s · ϵ

)
, (2)

LToF = ∥d̂− dToF ∥1, (3)

where m̂i are the iToF measurements after warping, and
ϵ is a small positive constant. While the standard arctan
function has a range limited to a semi-circle (−π/2, π/2),
the sign of the numerator and the denominator in Eq. (2)
can be used to extend the range to a full circle (−π, π]. This
method is commonly referred to as the arctan2 function

x = m̂0 − m̂2, (4)
y = m̂3 − m̂1, (5)

d̂ =
c

4πf
arctan2(y, x+ s · ϵ). (6)

As a consequence, the arctan2 function has multiple
branches, corresponding to the sign of its arguments, as can
be seen in Fig. 1.

The figure also illustrates the difference of dmax/2 be-
tween the two branches in this case. As a result if the
target (red point) is on the different branch than the cur-
rent depth estimate (green point), the direction of the opti-
mization needs to be inverted in order to move the estimate

dmax
d^

dmax
2

m0 - m2 > 0^ ^

m1^ m3^0
Figure 1. Reconstructed depth d̂ dependent on the measurement
m̂0 in the case of a positive denominator. The arctan2 function
changes branches at m̂3 = m̂1, which introduces a discontinuity.
As a result, if the prediction (red point) and the target value (green
point) are on separate branches, the gradient points in the wrong
direction (red arrow), and is corrected by our method (green ar-
row). The branches are separated by dmax/2, in line with Eq. (7).

through the phase wrapping of the arctan 2 function and
change to the correct branch. This is realized by our pro-
posed gradient correction presented in the main paper

∇LToF,PU =

{
∇LToF , 0 ≤ LToF < dmax/2,

−∇LToF , LToF ≥ dmax/2.

(7)

To show the influence on the optimization we conduct a
toy experiment, in which we formulate a simple reconstruc-
tion task. We assume m0,m1,m2 and dToF are given and
the task is to reconstruct the measurement m3 by minimiz-
ing the ToF loss LToF

min
m̂3

LToF (8)

=min
m̂3

∥∥∥∥ c

4πf
arctan2 (m̂3 −m1,m0 −m2)− dToF

∥∥∥∥
1

.

(9)

We initialize m̂0 = 0 and optimize it using simple gradient
descent, with and without applying our gradient correction
method. Without gradient correction only parts initialized

https://github.com/schellmi42/WFlowToF
https://github.com/schellmi42/WFlowToF


step 1k step 10k step 1k step 10k

To
F
de
pt
h

m
ea
su
re
m
en
t

To
F
er
ro
r

without PUGT with PU

error
scale

40
cm

-4
0c
m

0c
m

Figure 2. Reconstruction of measurement m̂3 by minimizing the ToF loss. Without phase unwrapping (PU) only partial reconstruction is
possible. After correcting the gradients with our method, the phase wrapping is successively resolved by the optimization (right).

on the correct branch are reconstructed, wheres after gradi-
ent correction all parts can be reconstructed, as is shown in
Fig. 2.

3. Regularization Losses

This section provides more insights on the effect of the
regularization losses.

Without regularizations the problem of supervising the
four measurements with a single depth is under-determined,
e.g. in Eq. (6) the ratio of y/x is the determining factor,
but not the individual values. While the search space is
already limited when predicting optical flows, as not arbi-
trary values are allowed, but only values from a local neigh-
borhood can be warped to a certain position, still regular-
ization is necessary to further restrict the network predic-
tions. Moreover, unsupervised Optical Flow (OF) networks
require such regularizations in general to achieve competi-
tive performance [5].

In our work we introduced two main regularizations
which measure consistency in the image space. The
smoothing loss Lsmooth measures region consistency be-
tween the predicted flow and the input image, and is ap-
plied before warping. The edge-aware loss Ledge measures
edge consistency between the warped image and the target
image, and is applied after warping.

The impact of these losses on the warped images can be
seen in Fig. 3

4. Experiments

In this section we provide detailed information about the
hyperparameters used for training the networks.

4.1. Implementation

All custom implementations were done in
PyTorch 1.10.+cu102 [10] and Python 3.6.
For the OF networks FFN [7] and PWC [13], and the
warping operation, we use implementations provided in the
PyTorch library ptlflow 0.2.5 [9].

4.2. Motion Compensation

Our Method. Both OF backbone networks FFN and
MOM [4] are trained with the ADAM [6] optimizer using
a learning rate scheduler which decays the learning rate by

Le
dg
e

Ls
m
oo
th

without withGT

Figure 3. Effect of the regularization losses on the warped image.
The smoothing loss Lsmooth ensures that pixels that belong to a
visually similar region are moved in the same direction (top row).
With the edge aware loss Ledge the edges of the warped image
align with the target image, preserving object boundaries and de-
tails. (bottom row)



a factor 0.5 when the ToF loss on the validation set did not
decrease for 50 epochs.

We augment the input data by simulating shot noise
on the iToF measurements, following the noise model de-
scribed by Schelling et al. [11]. Additionally, we use ran-
dom image rotations by 0◦, 90◦, 180◦, 270◦, random mir-
roring along the image axes, and crop random 512 × 512
image patches during training.

We train the FFN network with the combination of all
losses

LToF + λsmoooth · Lsmooth + λedge · Ledge + λsim · Lsim.
(10)

We compared the following values to select the hyperpa-
rameters: weights λi from {1, 1e-1, 1-e2, 1e-3, 1e-4}, and
the shift parameter s in the edge-aware loss from {1e-2, 1-
e1, 0, 1e1, 1e2, 1e3}. The results reported in the main paper
were achieved with λsmooth = 1, λedge = 1e-1, λsim =
1e-2, s = 1e2 in the single frequency case, and in the multi
frequency case only the similarity weight was changed to
λsim = 1e− 2. In all experiments the cosine similarity was
used in Lsim. In the single frequency experiments we train
with a batch size of 8, and in the multi-frequency experi-
ment with a batch size of 4. The initial learning rate is set
to 1e-3.

For the MOM network we do not use the similarity loss,
as the encoder decoder architecture does not have latent fea-
tures for a cost volume computation, thus we set λsim = 0.
We perform the same hyperparameter tuning as for the FFN
network. The results in the main paper were achieved
withλsmooth = 1, λedge = 1, s = 1e3 in both the single and
the multi-frequency experiments. We train with a batch size
of 1 and an initial learning rate of 1e-5, as recommended by
the authors of MOM [4],

Pre-Trained Networks. The pretrained networks, FFN
and PWC were trained on RGB data and hence require three
input channels. In our experiments we normalize the iToF
measurements to a range of [0, 255] and repeat the the scalar
image three times to match the RBG input. We use weights
pre-trained on the Sintel dataset [2].

UFlow. The UFlow [5] method is trained on the same data
as our method, using the TensorFlow2 implementation pro-
vided by the authors. We use the hyperparameters recom-
mended in the documentation for custom datasets, which
correspond to the settings for the Flying Chairs dataset [3]
in the UFlow paper.

Lindner Method. For the Lindner method, we match the
input dimensionality of the pre-trained networks using the
same scheme as above on the intensity computed with Lind-
ner’s method.

SF 1T SF 2T MF 1T MF 2T MF 4T
PWC (PT) 13.70 4.03 16.01 7.51 5.41
RAFT (PT) 8.48 4.08 14.72 6.55 4.63
Our (FFN) 5.81 3.66 13.77 4.43 3.03

Table 1. Resulting LToF of a pre-trained (PT) RAFT in compari-
son to a pre-trained PWC and our method using FFN as backbone.
Results on the test set.

Comparison to RAFT (SotA) As the task involves
the prediction of multiple optical flows at once, only
lightweight OF networks, such as FFN, can be trained
in this setting. More advanced architectures, such as
RAFT [14], which is currently the State-of-the-Art (SotA)
in supervised RGB OF prediction, increase the computa-
tional cost and we were unable to train it as a backbone
network. While a pre-trained RAFT model achieves a bet-
ter performance than the simpler PWC (see Tab 1), the in-
ference times are much slower (see Tab. 2). Still the pre-
trained RAFT model is outperformed by our method with a
much smaller FFN backbone (see Tab. 1).

4.3. Inference time

As our approach is a training algorithm, it does not af-
fect the evaluation times of the backbone OF networks. As
stated in the main paper, the encoder decoder architecture of
MOM allows fast execution times almost independent of the
number of predicted flows. In contrast, the runtime of net-
works using derivatives of the more advanced cost-volume
architecture [3] grows linearly corresponding to the number
of predicted flows. Prediction times for the networks used
in this work and a comparison to the SotA RAFT network
are shown in Tab. 2.

4.4. Motion Compensation and Error Correction

We implement the CFN [1] in PyTorch and also adapt
it to the single frequency case by reducing the input di-
mension to one. For the other approaches DeepToF [8],
E2E [12] and RADU [11] we use the TensorFlow2 im-
plementations by Schelling et al. [11]. We train all net-
works using the respective hyperparameters reported by
Schelling et al. for their CB-Dataset.

SF 1T SF 2T MF 1T MF 2T MF 4T
MOM 0.002 0.002 0.002 0.002 0.002
FFN 0.067 0.025 0.230 0.107 0.047
PWC 0.092 0.054 0.342 0.154 0.062
RAFT 0.342 0.110 1.275 0.578 0.228

Table 2. Inference times in s of the OF backbone networks, aver-
aged over the test set, on a GTX 1080 GPU.



40
cm

-4
0c
m

0c
m

error
scale

40
cm

-4
0c
m

0c
m

error
scale

Figure 4. Results of our method for single frequency single-tap (SF 1Tap, left) and multi frequency two-tap (MF 2Tap, right). The scenes
contain moving objects. First row shows ToF depths, second row shows error maps. Please note that the ToF depths are not phase
unwrapped.

4.5. Ablation: Similarity Loss Function

We train the FFN network with the different similarity
measures in the similarity loss function Lsim and optimize
their weight λsim from {1e1, 1, 1e-1, 1e-2, 1e-3, 1e-4}
for each measure. When training with input generated by
Lindner’s method in the multi frequency two-tap case, we
reduce the network input dimension to one. The other
hyperparameters, including the weights of the other losses,
are set as in the main experiments. The results in the main
paper were achieved with the following weights:
SF 1Tap: L1: 1e-2, L2: 1e-1, Cost: 1e-2, Cosine: 1e-3
MF 2Tap: L1: 1e-3, L2: 1e-2, Cost: 1, Cosine: 1e-3

5. Qualitative Results
Results of our method using the FFN and the MOM net-

work can be seen in Fig. 4, 5, 6 and 7. The figures show
one frame per scene from the test set. To cover both single
and multi frequency and single and multi-tap the two cases
single frequency single tap and multi frequency two tap are
shown.

In Fig. 8 we show additional results for the combined
correction of motion artifacts and Multi-Path-Interference

(MPI) using the CFN as error correction network.

References
[1] Gianluca Agresti and Pietro Zanuttigh. Deep learning for

multi-path error removal in ToF sensors. In Proceedings
of the European Conference on Computer Vision (ECCV)
Workshops, pages 0–0, 2018.

[2] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and
Michael J Black. A naturalistic open source movie for op-
tical flow evaluation. In European conference on computer
vision, pages 611–625. Springer, 2012.

[3] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2758–2766, 2015.

[4] Qi Guo, Iuri Frosio, Orazio Gallo, Todd Zickler, and Jan
Kautz. Tackling 3D ToF artifacts through learning and the
FLAT dataset. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 368–383, 2018.

[5] Rico Jonschkowski, Austin Stone, Jonathan T Barron, Ariel
Gordon, Kurt Konolige, and Anelia Angelova. What
matters in unsupervised optical flow. arXiv preprint
arXiv:2006.04902, 2020.



[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[7] Lingtong Kong, Chunhua Shen, and Jie Yang. FastFlowNet:
A lightweight network for fast optical flow estimation. In
2021 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 10310–10316. IEEE, 2021.

[8] Julio Marco, Quercus Hernandez, Adolfo Munoz, Yue Dong,
Adrian Jarabo, Min H Kim, Xin Tong, and Diego Gutierrez.
DeepToF: off-the-shelf real-time correction of multipath in-
terference in time-of-flight imaging. ACM Transactions on
Graphics (ToG), 36(6):1–12, 2017.

[9] Henrique Morimitsu. Pytorch lightning optical flow.
https://github.com/hmorimitsu/ptlflow,
2021.

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[11] Michael Schelling, Pedro Hermosilla, and Timo Ropinski.
RADU: Ray-aligned depth update convolutions for ToF data
denoising. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 671–680,
2022.

[12] Shuochen Su, Felix Heide, Gordon Wetzstein, and Wolfgang
Heidrich. Deep end-to-end time-of-flight imaging. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6383–6392, 2018.

[13] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
PWC-Net: CNNs for optical flow using pyramid, warping,
and cost volume. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8934–8943,
2018.

[14] Z. Teed and J. Deng. RAFT: Recurrent all-pairs field trans-
forms for optical flow. In Proc. of ECCV, 2020.

https://github.com/hmorimitsu/ptlflow


40
cm

-4
0c
m

0c
m

error
scale

40
cm

-4
0c
m

0c
m

error
scale

40
cm

-4
0c
m

0c
m

error
scale

40
cm

-4
0c
m

0c
m

error
scale

Figure 5. Results of our method for single frequency single-tap (SF 1Tap, left) and multi frequency two-tap (MF 2Tap, right). First row
shows ToF depths, second row shows error maps. ToF depths are not phase unwrapped.



40
cm

-4
0c
m

0c
m

error
scale

40
cm

-4
0c
m

0c
m

error
scale

40
cm

-4
0c
m

0c
m

error
scale

40
cm

-4
0c
m

0c
m

error
scale

Figure 6. Results of our method for single frequency single-tap (SF 1Tap, left) and multi frequency two-tap (MF 2Tap, right). First row
shows ToF depths, second row shows error maps. Please note that the ToF depths are not phase unwrapped.



40
cm

-4
0c
m

0c
m

error
scale

40
cm

-4
0c
m

0c
m

error
scale

40
cm

-4
0c
m

0c
m

error
scale

40
cm

-4
0c
m

0c
m

error
scale

Figure 7. Results of our method for single frequency single-tap (SF 1Tap, left) and multi frequency two-tap (MF 2Tap). First row shows
ToF depths, second row shows error maps. Please note that the ToF depths are not phase unwrapped.



60
cm

-6
0c
m

0c
m

error
scale

60
cm

-6
0c
m

0c
m

error
scale

60
cm

-6
0c
m

0c
m

error
scale

60
cm

-6
0c
m

0c
m

error
scale

Figure 8. Results of combined motion and MPI correction using the CFN network. First row shows depths, second row shows error maps.
Input in the MF 2Tap case is shown at highest frequency. First scene contains a moving object. Please note that CFN receives input from
all frequencies, which can result in additional motion artifacts in the prediction compared to the high frequency input ToF depth.


