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1. Overview
In this supplementary material we provide details on the

architectures used for our shadow removal networks. We
also provide additional visual results from the various net-
works proposed in our method.

2. Network Architecture
The architectures of our proposed Low-resolution

Shadow Removal Network (LSRNet), Detail Refinement
Network (DRNet) and the Discriminator used for the adver-
sarial training are detailed in Table 1, 2 and 3 respectively.
As described in the paper both LSRNet and DRNet fol-
lows the encoder-bottleneck-decoder architecture. DRNet
shares the same architecture of LSRNet with the exception
of attention mechanism in the network and uses bottleneck
residual blocks instead of vanilla convolutional layers.

3. Additional Results
3.1. Results: Shadow Removal

In Table 1 from the paper, we quantitatively compared
our proposed shadow removal network against the state-of-
the-art baselines SID [6], DHAN [2] and AEF [3]. Our
quantitative results are different from the claims of authors
due to a change in the evaluation pipeline. As pointed out by
the authors of [6] here, the calculated and reported metric in
most of the exiting works is MAE but incorrectly reported
as RMSE. We evaluated our results and the official results
from published/pre-trained networks of above works using
the below pipeline:

For each image in the test set:
1. Generate results using the network.
2. Convert the predicted image and ground-truth to LAB

color space using the rgb2lab function from skimage.color
module.

3. Calculate RMSE on the entire image and store the
result.

4. Mask out the pixels in shadow-free region and shadow
region for calculating RMSE on shadow and shadow-free
regions respectively and store the results.

Return the average of stored values for all the images in
the test set.

We present more visual comparisons of our model
against the existing methods in Figure 1.

3.2. Results : Shadow Removal on High-Resolution
images

Existing shadow removal methods are limited to low-
resolution and do not scale well to high-resolution images.
We provide additional examples in Figure 2, where we
demonstrate that for existing techniques, shadow removal
quality degrades as we progressively increase the image res-
olution. In contrast, our proposed method produces consis-
tent artefact-free results even on high-resolution images.

3.3. Results : Shadow Detection

We provide additional qualitative comparison with our
proposed shadow detector network against existing state-
of-the-art techniques on the SBU dataset in Figure 3.

3.4. Results : End-to-end Shadow Removal results
on High-Resolution images

In Figure 4 we showcase our end-to-end results on
high-resolution images using the proposed shadow detec-
tion and shadow removal networks on ISTD-HQ (reso-
lution: 2560x1920) and SFHQ (resolution: 4034x3024)
datasets. SFHQ dataset consists of shadow annotations of
only external-cast shadows. The network trained on SFHQ
dataset is thus trained to remove external-cast shadows and
leaves traces of self-cast shadows in some cases.

https://github.com/cvlab-stonybrook/SID/blob/main/README.md


Layer Configuration
conv k = 7× 7, c = 32
conv k = 3× 3, c = 64, stride = 2

conv
(
k = 3× 3, c = 128, stride = 2

)
× 2

conv k = 3× 3, c = 256, stride = 2

bottleneck
residual

 k = 1× 1, c = 64
k = 3× 3, c = 64
k = 1× 1, c = 256

× 4

attention-
bottleneck

residual


self − attention
k = 1× 1, c = 64
k = 3× 3, c = 64
k = 1× 1, c = 256

× 5

cbam-up-conv

 CBAM
bilinear upsampling 2x

k = 3× 3, c = 128

× 2

cbam-up-conv

 CBAM
bilinear upsampling 2x

k = 3× 3, c = 64


cbam-up-conv

 CBAM
bilinear upsampling 2x

k = 3× 3, c = 32


conv k = 7× 7, c = 3

Table 1: LSRNet architecture

Layer Configuration
conv k = 7× 7, c = 32

bottleneck
residual

 k = 1× 1, c = 16
k = 3× 3, c = 16, stride = 2

k = 1× 1, c = 64


bottleneck
residual

 k = 1× 1, c = 32
k = 3× 3, c = 32, stride = 2

k = 1× 1, c = 128

× 2

bottleneck
residual

 k = 1× 1, c = 32
k = 3× 3, c = 32
k = 1× 1, c = 128

× 9

bottleneck
residual


upsampling 2× 2
k = 1× 1, c = 32
k = 3× 3, c = 32
k = 1× 1, c = 128


bottleneck
residual


upsampling 2× 2
k = 1× 1, c = 16
k = 3× 3, c = 16
k = 1× 1, c = 64


bottleneck
residual


upsampling 2× 2
k = 1× 1, c = 8
k = 3× 3, c = 8
k = 1× 1, c = 32


conv k = 7× 7, c = 3

Table 2: DRNet architecture

Layer Configuration
conv k = 4× 4, c = 32, stride = 2
conv k = 4× 4, c = 64, stride = 2
conv k = 4× 4, c = 128, stride = 2

attention self − attention
conv k = 4× 4, c = 256
conv k = 4× 4, c = 1

Table 3: Discriminator network architecture
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Figure 1: Qualitative results of our proposed Shadow Removal method, compared with existing state-of-the-art methods
SID [6], DHAN [2], AEF [3] on ISTD and SFHQ datasets (Zoom-in for better visualization).
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Figure 2: Qualitative results showing shadow removal results at progressively increasing image resolutions (left-to-right)(256,
512, 1024, 2048) between SID [6], DHAN [2], AEF [3] and the proposed method. As shown in the figure, shadow removal
quality degrades as the image resolution is increased for existing methods. In contrast, our proposed method retains the
shadow removal quality even at high-resolution. (Zoom-in for better visualization)
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Figure 3: Qualitative results of our proposed Shadow Detection method, compared with existing state-of-the-art methods
BDRAR [8], DSDNet [7], DSC [5], MTMT-Net [1], FSDNet [4].
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Figure 4: End-to-end Shadow Removal results using proposed Shadow Detector and Remover networks (SHARDS) on High-
Resolution images from ISTD-HQ and SFHQ datasets (Zoom-in for better visualization).


