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Supplementary Material
In this supplementary material, we present additional details and results pertaining to the experiments that are not included

in the main text due to space constraints. All figures and references in this supplementary material are self-contained. The
contents included in this supplementary material are as follows: 1) Details of the backbone network architectures, audio
preprocessing, and datasets, 2) Layer visualizations, 3) Layer analysis with VGGSound categories, 4) Additional sound
localization results, 5) Potential applications, 6) Annotation process for the VGGSound multilabel analysis.

A. Architecture Details of Backbone Networks
In Table 1, we provide the architecture of the backbone networks. We use two-stream network architecture, video net-

work and audio network, as in existing audio-visual learning works. The video network is a spatio-temporal ResNet mixed
convolution network, identical to MCx [11], borrowed from official PyTorch implementation1 (mc3 18). The audio network
architecture is similar to [1]. Batch Normalization and ReLU activation function are used after every convolution layer.

The networks are trained using the SGD optimizer with the starting learning rate of 0.01, and the learning rate is reduced
by a factor of 10 if the validation accuracy does not increase for 3 epochs.

B. Audio Preprocessing Details
Our audio preprocessing follows the setting used in the previous works [1, 12]. We sample audio data with 16kHz

sampling rate and input audio is 10 seconds. STFT is computed using n fft = 512, hop length = 160, win length = 320,
window = hann window(320), center = True and pad mode = reflect and 1000×80 log-mel spectrogram is produced
with 80 mel filterbanks by using PyTorch. Audio onsets are computed using librosa [6] onset detection function with a pre-
computed onset envelopes.

C. Datasets
We train and validate our method on five video datasets using standard evaluation metrics. VGGSound [4] is a recently

released audio-visual dataset which contains around ∼200K videos obtained from YouTube and labelled with 309 categories.
Kinetics-400 [5] is a large-scale standard benchmark dataset for action recognition with ∼240K training and 20K validation
videos containing 400 human action classes. Kinetics-Sound [2] is created by choosing 34 classes from Kinetics dataset
that are assumed to have audio and visual characteristics and it has total ∼22k videos. AVE [10] is another audio-visual
dataset formed for audio-visual event localization and it contains around 4K videos covering 28 event categories. LLP [9] is
a multi-label dataset consisting of ∼12k videos labeled by 25 categories and formed for audio-visual video parsing.

However, some of the videos are removed or not accessible from the web because of privacy or regional settings. Hence,
our datasets may be slightly smaller than official numbers for some datasets (See Table 2). Additionally, the original 34
classes in Kinetics-Sound are based on the earlier version of the Kinetics. Some classes are removed currently. Therefore,
we use available 31 classes.

For multi-label evaluation, we construct an additional subset of VGGSound, called Multi-labeled VGGSound. Please refer
to Section G.

1https://pytorch.org/vision/0.8/models.html#torchvision.models.video.mc3 18



Table 1: Architecture of the backbone networks. K, S, P , res, maxpool and avgpool denote kernel size, stride, padding,
residual, max-pooling and average-pooling layers, respectively.

Layer # filters K S P Output

input 1 - - - 10× 100× 80
conv1 64 (1,3,3) (1,2,1) (0,1,1) 10× 50× 80
conv2 64 (1,3,3) (1,1,2) (0,1,1) 10× 50× 40
maxpool2 - (1,1,3) (1,1,2) (0,0,0) 10× 50× 19
conv3 192 (1,3,3) (1,1,1) (0,1,1) 10× 50× 19
maxpool3 - (1,3,3) (1,2,2) (0,0,0) 10× 24× 9
conv4 256 (1,3,3) (1,1,1) (0,1,1) 10× 24× 9
conv5 256 (1,3,3) (1,1,1) (0,1,1) 10× 24× 9
conv6 256 (1,3,3) (1,1,1) (0,1,1) 10× 24× 9
maxpool6 - (1,3,2) (1,2,2) (0,0,0) 10× 11× 4
conv7 512 (1,4,4) (1,1,1) (0,1,0) 10× 10× 1
fc8 512 (1,1,1) (1,1,1) (0,0,0) 100× 1
fc9 512 (1,1,1) (1,1,1) (0,0,0) 100× 1

(a) Audio Network

Layer # filters K S P Output

input 3 - - - 100× 112× 112
conv1 64 (3,7,7) (1,2,2) (1,3,3) 100× 56× 56
conv2 64 (3,3,3) (1,1,1) (1,1,1) 100× 56× 56
conv3 64 (3,3,3) (1,1,1) (1,1,1) 100× 56× 56
conv4 64 (3,3,3) (1,1,1) (1,1,1) 100× 56× 56
conv5 64 (3,3,3) (1,1,1) (1,1,1) 100× 56× 56
conv6 128 (1,3,3) (1,2,2) (0,1,1) 100× 28× 28
conv7 128 (1,3,3) (1,1,1) (0,1,1) 100× 28× 28
res-conv8 128 (1,1,1) (1,2,2) (0,0,0) 100× 28× 28
conv9 128 (1,3,3) (1,1,1) (0,1,1) 100× 28× 28
conv10 128 (1,3,3) (1,1,1) (0,1,1) 100× 28× 28
conv11 256 (1,3,3) (1,2,2) (0,1,1) 100× 14× 14
conv12 256 (1,3,3) (1,1,1) (0,1,1) 100× 14× 14
res-conv13 256 (1,1,1) (1,2,2) (0,0,0) 100× 14× 14
conv14 256 (1,3,3) (1,1,1) (0,1,1) 100× 14× 14
conv15 256 (1,3,3) (1,1,1) (0,1,1) 100× 14× 14
conv16 512 (1,3,3) (1,2,2) (0,1,1) 100× 7× 7
conv17 512 (1,3,3) (1,1,1) (0,1,1) 100× 7× 7
res-conv18 512 (1,1,1) (1,2,2) (0,0,0) 100× 7× 7
conv19 512 (1,3,3) (1,1,1) (0,1,1) 100× 7× 7
conv20 512 (1,3,3) (1,1,1) (0,1,1) 100× 7× 7
avgpool - (1,7,7) - (0,0,0) 100× 1× 1

(b) Video Network

Dataset Train Test Val. Total
VGGSound 170384 0 13675 184059
Kinetics 208552 33595 17019 259166
Kinetics-Sound 19931 2677 1351 23959
AVE 3697 402 0 4099
LLP 9620 1162 624 11406

Table 2: Dataset statistics in our experiments.

D. Category-wise Layer Analysis
In Figure 1, we list the VGGSound categories that are assigned to each Audio-Visual event-specific layer of our network.

To obtain these results, we apply majority voting rule among all the videos within each category and assign the layer label
to the categories as we explain in “event-characteristics of a dataset” subsection of the main paper. We show some of these



categories (due to the limited space) for each audio-visual event layers in Figure 1.
The onset event layer predicts categories that are related to music, animal and repetitive actions or sounds as shown

in Figure 1. As aforementioned in the main paper, musical instruments such as “playing tambourine”, “playing steelpan”,
“beatboxing” or animal vocalization sounds – “frog croaking”, “francolin calling”, “chipmunk chirping” – and some actions
such as “hammering nails”, “forging swords”, “smoke detector beeping” all tend to have rhythmic and repetitive character-
istics. This aligns with our design motivation that onset event layer learns rhythmic, repetitive and periodic events as listed
categories contain these characteristics.

The instant event layer focuses on the categories that contain impact events like “bowling impact”, “closing car doors” or
sudden events like “people nose blowing”, “train horning” or explosion-kind of events such as “firing muskets”, “splashing
water” and “people farting”. This also matches with our intuition that instant event layer predicts sudden, sparse highly
audio-visual correlated instant events.

Finally, the categories that are highlighted by the continuous event layer have temporally constant-like characteristics such
as “bathroom ventilation fan”, “blowtorch igniting”, “hair dryer drying” or slowly evolving sounds like “airplane” or “sea
waves”. The results also show that our intuition on the continuous event layer matches with these categories.

Figure 1: VGGSound categories that are assigned to each audio-visual event layer.



E. Sound Localization
Figure 2 shows the additional qualitative results of the sound localization attempt, spatially and time-wise, by using the

features from our backbone networks throughout videos. We also visualize the attention maps of VGG-SS test samples
in Figure 3 and compare them with the state- of-the-art [3] method. Figure 3 shows how two different approaches response
to the same samples.

Figure 2: Additional Sound Localization Results.



Figure 3: Sound Localization Results on VGG-SS and comparison with LVS [3].

Method IoU AUC Main Task
AVEL [10]ECCV18 0.291 0.348 ×
AVobject [1]ECCV20 0.297 0.357 ×
Ours 0.309 0.354 ×
Attention [7]CVPR18 0.185 0.302 ✓
LVS [3]†CVPR21 0.303 0.364 ✓
SSPL(w/o PCM) [8]CVPR22 0.270 0.348 ✓
SSPL(w/ PCM) [8]CVPR22 0.339 0.380 ✓

Table 3: Sound source localization on the VGG-SS test set [3]. All models are trained on the VGG-Sound 144k and tested
on VGG-SS. † is obtained from the model provided by the original authors.

In Table 3, we quantitatively evaluate sound source localization capability. We use the recently released VGG-SS
dataset [3] that is curated from VGGSound containing around 5k samples. Among the audio-visual learning models, our
method performs favorably against the other audio-visual models [10, 1]. Moreover, our method shows competitive perfor-
mance against the audio-visual models that are explicitly trained to tackle sound localization as a main task.

F. Potential Applications
In “Concluding Remarks” section of the main paper, we have discussed potential applications that can be built based on

our model. In this supplementary material, we present some examples for these applications.

F.1. Dataset Retargeting / Cleanup

As an example to dataset retargeting application, we use our proposed method to identify the event characteristic distri-
bution of Kinetics dataset and only select the categories that fall under the audio-visual event layers. Kinetics-Sound dataset
is constructed to have a high efficacy in audio-visual learning tasks. Based on the subset we construct, we compare to see
how many categories of Kinetics-Sound matches with the categories that our audio-visual event layers filter. This experiment
reveals that 66% of the Kinetics-Sound categories are matched. Kinetics-Sound categories that intersect with the categories
that our audio-visual event layers filtered from Kinetics are listed in Figure 4. The categories marked in red are the categories



of Kinetics-Sound that are not selected by our audio-visual event layers filter.

Figure 4: Kinetics-Sound categories that intersect with our AV categories in Kinetics.

F.2. Modality-level Video Understanding

We present an example of modality-level video understanding in Figure 5. As shown in the figure, the modality confidence
of each layer is highly activated only when there is meaningful signal. The audio modality confidence level aligns with the
audio signal presence. Similarly, vision modality confidence is activated when the meaningful frames, i.e., frames with owl,
appear. The audio-visual modality, which is per second continuous layer in this example, is activated when either modality
is confident.

Figure 5: Modality-level Video Analysis Results. Plotted lines at the bottom of the figure depicts the modality confidence
level throughout the video according to the informative signals.

F.3. Missing Label Detection

Often, a video contains multiple objects and events with complex interactions. It is difficult to fully represent contents of
a video with a single label. Moreover, humans make mistakes during annotations by missing annotation. Our model outputs
multiple labels using the event-specific layers which capture different characteristics of a video. We provide multi-label
prediction examples using videos from VGGSound in Figure 6. The examples show that our model captures diverse contents
of a video that are not annotated.

G. Annotation Process for VGGSound Multilabel Analysis (Multi-labeled VGGSound)
In the experiment section of the main paper, we perform multilabel analysis on VGGSound. Here, we describe the

multilabel selection process and illustrate our tool for the analysis. Note that this is not a typical annotation process that finds
all labels in a video. Since our human resource is limited 2, we focus on our analysis to answer two question: “Does the
VGGSound dataset contain multiple events but only annotated with a single label?”, and “Are the multi-label predictions of
our network correct?’

2This multilabel user study is conducted with the research interns who are not involved in this work.



Figure 6: Missing Label Prediction. Our method predicts additional labels that are contained but not labeled in the given
video examples.

As Figure 7 illustrates, our user interface to annotate multilabels on the VGGSound dataset is a web form with five
columns. The first column, “Index”, represents the index of the videos in order. The second column, “File Name”, represents
the name of the videos. The third column, “Video”, contains the playable video (containing the audio as well). The fourth
column, “Predictions”, holds the potential class labels for the given video. The last column, “Category Info.”, contains the
supplemental visual description of each candidate class label. During the annotation process, annotators watch a video placed
in the third column. There are multiple candidate classes predicted from our model for the given video in the fourth column.
Annotators select relevant labels after watching the video. Additionally, annotators can refer to the last column, “Category
Info.”, as it provides visual examples to aid annotators who are not familiar with the meaning of the label. After making the
selection for each video in this web form, users simply submit their answers via clicking the submit button.

We ask 12 subjects to annotate ∼1200 videos in VGGSound given the multiple video-level predictions obtained by our
model as candidates, and the subjects annotate matched labels with given video contents.
Limitations. Our system can predict multiple labels. The first limitation of our work is the raw predictions of multiple
labels that are not calibrated. A prediction with the highest confidence is not necessarily more dominant or accurate than the
other predictions. Proper calibration of the confidences may enable our model to select the most prominent event in a video.
Another limitation is false positives in multi-label predictions. Although a majority of our model’s multi-label predictions
align with human perception as in Table 2 and Figure 4 of the main paper, there is still a gap.
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[2] Relja Arandjelović and Andrew Zisserman. Look, listen and learn. In IEEE International Conference on Computer Vision (ICCV),

2017.
[3] Honglie Chen, Weidi Xie, Triantafyllos Afouras, Arsha Nagrani, Andrea Vedaldi, and Andrew Zisserman. Localizing visual sounds

the hard way. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.



Figure 7: User interface for multilabel analysis of VGGSound.

[4] Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-visual dataset. In IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020.

[5] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green,
Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950, 2017.

[6] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto. librosa: Audio and
music signal analysis in python. In Proceedings of the 14th python in science conference, volume 8, 2015.

[7] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan Yang, and In So Kweon. Learning to localize sound source in visual scenes.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[8] Zengjie Song, Yuxi Wang, Junsong Fan, Tieniu Tan, and Zhaoxiang Zhang. Self-supervised predictive learning: A negative-free
method for sound source localization in visual scenes. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2022.

[9] Yapeng Tian, Dingzeyu Li, and Chenliang Xu. Unified multisensory perception: Weakly-supervised audio-visual video parsing. In
European Conference on Computer Vision (ECCV), 2020.

[10] Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chenliang Xu. Audio-visual event localization in unconstrained videos. In
European Conference on Computer Vision (ECCV), 2018.



[11] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer look at spatiotemporal convolutions
for action recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[12] Fanyi Xiao, Yong Jae Lee, Kristen Grauman, Jitendra Malik, and Christoph Feichtenhofer. Audiovisual slowfast networks for video
recognition. arXiv preprint arXiv:2001.08740, 2020.


