
Creating a Forensic Database of Shoeprints from Online Shoe Tread Photos
(Supplementary Material)

Samia Shafique1 Bailey Kong2 Shu Kong3* Charless Fowlkes1∗

1University of California, Irvine 2Ronin Institute 3Texas A&M University
sshafiqu@uci.edu bailey.kong@ronininstitute.org fowlkes@ics.uci.edu shu@tamu.edu

https://github.com/Samia067/ShoeRinsics

Outline
We propose to create a forensic database of shoeprints

by leveraging shoe-tread imagery collected by online retail-
ers. To do so, we strive to predict depth maps for these
photos, thresholding whihc generates shoeprints used to
match a query print (collected from a crime scene). We
propose a novel method, ShoeRinsics, to learn depth es-
timation from synthetic data (along with intrinsic compo-
nents) and real data (with no annotations). SheoRinsics in-
corporates synthetic-to-real domain adaptation and intrinsic
image decomposition techniques to mitigate domain gaps.
We validate our method with a defined evaluation proto-
col that measures the degree of match between predicted
depth and ground-truth shoeprints (collected in a lab envi-
ronment). Results convincingly demonstrate that ShoeRin-
sics remarkably outperforms state-of-the-art methods for
shoe-tread depth prediction. In this supplementary docu-
ment, we discuss the following topics:

• Section 1 details the process of matching a ground-
truth shoeprint to predicted depth for evaluation.

• Section 2 shows qualitative analysis of our ShoeRin-
sics. We visualize of all predictions of ShoeRinsics on
real-FID-val images downloaded from the internet in
Section 2.1 and compare to RIN [9] in Section 2.2.

• Section 3 compares performance of ShoeRinsics with
related work for each individual image from real-val
and real-FID-val.

• Section 4 provides details on our synthetic dataset gen-
eration. The process of depth map generation is de-
scribed in Section 4.1 and the light environemnts used
are visualized in Section 4.2.

• Section 5 describes how we photograph shoe-treads
and collect their prints to create a validation set (real-
val) for quantitative evaluation.

*Authors share senior authorship.

Algorithm 1 Metric of Depth-Print Matching

1: Input: predicted depth X̂d
R, ground-truth shoeprint S∗, and

mask m
2: Initialize best-matching IoU vmax = 0
3: determine per-pixel local depth, dl = blurred depth

blurred mask
4:
5: for s ∈ [0.1, 0.11, 0.12, . . . , 2] do
6: if IoU(X̂d

R < sdl, S
∗) > vmax then

7: vmax = IoU(X̂d
R < sdl, S

∗),
8: set best-matching shoeprint Sbest = X̂d

R < sdl
9: end if

10: end for
11:
12: set p95 = value at the 95th percentile in sorted X̂d

R

13: for tnc ∈ [0.1p95, 0.1p95 +0.01, 0.1p95 +0.02, . . . , p95] do
14: determine shoeprint Stnc = Sbest AND (X̂d

R < tnc)
15: if IoU(Stnc , S

∗) > vmax then
16: vmax = IoU(Stnc , S

∗), Sbest = Stnc

17: end if
18: end for
19:
20: set p05 = value at the 5th percentile in sorted X̂d

R

21: for tc ∈ [p05, p05 + 0.1, p05 + 0.2, . . . , 30p05] do
22: determine shoeprint Stc = Sbest OR (X̂d

R < tc)
23: if IoU(Stc , S

∗) > vmax then
24: vmax = IoU(Stc , S

∗)
25: end if
26: end for
27: return best-matching IoU vmax

• Section 6 details the architecture of each component of
our ShoeRinsics.

• Section 7 discusses the pseudo albedo generated for
real shoe-tread images and compares them to the
albedo predicted by ShoeRinsics.

1. Depth-Print Matching in Evaluation
We get the shoeprint prediction by thresholding the pre-

dicted depth X̂d
R of a shoe-tread image. However, different

thresholds can produce different predicted shoeprints. So,
we develop a threshold-free metric for evaluating how well

https://github.com/Samia067/ShoeRinsics


(a) shoe-tread 
image

(f) ground-truth print(b) pred. depth (c) pred. print 
w/ global thresh.

(d) local thres. (e) pred. print 
w/ adaptive thresh.

Figure 1. Effect of adaptive threshold. Given a shoe-tread image (a), we predict its depth (b). Notice that the front of the shoe is curved up
slightly (highlighted by the red boxes). Thus, a global threshold fails to capture the print properly. Compare the print prediction using a
global threshold (c) with the ground-truth print (f). A solution is to use an adaptive threshold instead. As such, we first blur the predicted
depth to get the local mean depth dl. Using sdl as the local threshold (d) where s is an appropriate constant for scaling, we get predicted
print (e) which is much closer to the ground-truth (f).

(a) shoe-tread 
image

(b) pred. depth (d) pred. print w/ 
adaptive thresh.

(e) pred. print w/ 
adaptive thresh. 

+ tnc clipping

(c) local thresh.

Figure 2. Effect of non-contact threshold tnc. A shoe-tread im-
age (a), the corresponding depth prediction (b), the local threshold
(c), and the predicted print prediction with adaptive threshold (d)
is shown. We can see that using only the adaptive threshold can
cause errors in large areas of non-contact surface as shown by the
red boxes. Assume non-contact surfaces have high depth values.
Although the logo is correctly predicted to have a high depth value,
the local threshold also happens to be high in the region and causes
adaptive thresholding to undesirably predict the logo to leave a
print. To correct this, we find an appropriate non-contact thresh-
old tnc for which regions where predicted depth is greater than tnc

does not leave a print. The resulting print is shown in (e).

(a) shoe-tread 
image

(b) pred. depth (d) pred. print w/ 
adaptive thresh.

+ tnc clipping

(e) pred. print w/ 
adaptive thresh. 

+ tnc clipping 
+ tc clipping

(c) local thresh.

Figure 3. Effect of contact threshold tc. We visualize a sample
shoe-tread image (a), the predicted depth (b), the local thresh-
old (c), and the print prediction after using adaptive thresholing
with tnc clipping (d). Parts of a large contact surface incorrectly
leaves no print as shown by the red boxes because the local thresh-
old is very low in the region (assuming contact areas have low
depth value). To correct this, we determine an appropriate contact
threshold tc such that regions where predicted depth is less than tc
always leave a print. (e) demonstrates the final result.

our predicted depth matches a ground-truth shoeprint. Ide-
ally, we want to threshold the depth prediction in a way that

produces a shoeprint prediction that most closely matches
the ground-truth shoeprint. We summarize our method in
Algorithm 1.

Global thresholding vs. adaptive thresholding. Using
a global threshold for print prediction from depth prediction
is troublesome since errors can creep into regions where the
shoe-tread curves upwards (for example, in the front of the
shoe). Fig. 1 illustrates this scenario with a sample shoe
from real-val. In such cases, although the shoe is curved
upwards, it still leaves a print when someone walks wear-
ing those shoes. This is because the weight of the person
flattens out the shoe. Also, the physical motions of walking
causes the curved parts to come in contact with the ground.
Assuming high depth values correspond to non-contact sur-
faces, a portion of the shoe that curves up would have high
depth values and a global threshold might incorrectly indi-
cate that region does not leave a print. We can solve this
issue by using adaptive thresholding instead.

Details of adaptive thresholding. To perform adaptive
thresholding, we first determine a per-pixel local average dl
for the predicted depth. This is achieved by blurring the pre-
dicted depth X̂d

R with a large square kernel of size 45× 45.
For comparison, our shoe-tread image and predicted depth
map resolution is 405 × 765. We note that boundaries and
invalid depth values outside the mask may cause artifacts in
dl. To negate this effect, we set dl = dl

ml
where ml is the

per-pixel local average for the mask computed in a similar
manner.

Next, we set our best-matching shoeprint Sbest = X̂d
R <

sdl for some scalar multiplier s. Theoretically, we want to
sweep over all possible values of s and find the one which
gives the highest IoU between X̂d

R < sdl and the ground-
truth print S∗. Practically, we sample values from range
[0.1, 2] at intervals of 0.01.

Threshold tnc for large non-contact regions. Al-
though, our current best-matching shoeprint estimation is
good enough for most cases, it may have issues for very
large non-contact surfaces. Fig. 2 illustrates how a large



image pred. albedo pred. normal pred. depth pred. print GT print

Figure 4. Visualization of predicted shoeprints, as well as intrinsics, by our ShoeRinsics on real-FID-val. Real-FID-val consists of images
of real shoe-treads downloaded from online retailers and corresponding ground-truth shoeprints. Visually, we can see our method works
quite well w.r.t both shoeprint prediction and intrinsic decomposition (albedo, normal, and depth).

image pred. albedo pred. normal pred. depth pred. print GT print

RIN

ShoeRinsics

RIN

ShoeRinsics

Figure 5. Qualitative comparison between RIN [9] and ShoeRinsics on real-val. Along with input images and ground-truth shoeprint, we
show albedo, normal, depth, and print prediction. Note that RIN does not directly produce depth predictions. We obtain them by integrating
their normal predictions using the well-established Frankot Chellappa algorithm [4]. As we can see, RIN produces poor quality albedo
and normal predictions, presumably because it does not explicitly perform domain adaptation. The albedo predictions retain much of the
shading information and the normal predictions are noisy. The substandard normal predictions in RIN lead to unsatisfactory depth and print
predictions. Comparatively, ShoeRinsics is able to produce more likely albedo, normal, and depth predictions and thus predict shoeprints
which are much closer to the ground-truth.

non-contact region can cause the local threshold sdl to be
very high. This in turn can lead to incorrectly predicting
some areas to leave a print (such as the logo in Fig. 2).

We fix this by identifying the threshold tnc which gives
the highest IoU between ground-truth shoeprint S∗ and
Sbest AND (X̂d

R < tnc) and update our shoeprint predic-



tion Sbest. We find it sufficient to determine tnc by sampling
values in range [0.1p95, p95] at an interval of 0.01 where p95
is the 95th percentile of sorted X̂d

R values.
Threshold tc for large contact regions. A similar prob-

lem and solution apply for large contact surfaces as demon-
strated in Fig. 3. In such regions, the local threshold is very
low and can result in “holes” in our predicted print. Our
solution is to find threshold tc for which the IoU between
ground-truth shoeprint S∗ and Sbest OR (X̂d

R < tc) is high-
est. We can find an adequate value for tc by sampling num-
bers from range [p05, 30p05] at intervals of 0.1 where p05 is
the 5th percentile of sorted X̂d

R values.
Generic thresholds for print prediction. To determine

shoeprint predictions from real images without ground-truth
print, we set s = 1, tnc = p97, and tc = p03 where px is the
xth percentile of sorted X̂d

R values.

2. Qualitative Results of ShoeRinsics on Real
Shoe-Treads

In this section, we perform additional qualitative analysis
of our ShoeRinsics. We visualize our albedo, normal, depth,
and print predictions (Fig. 4) as well as compare shoeprint
predictions to that of RIN [9] (Fig. 5).

2.1. Visualization of Predictions on Real-FID-val

One of the datasets we collected, real-FID-val, consists
of images of real shoe-treads downloaded from online re-
tailers with corresponding ground-truth shoeprints. We vi-
sualize our intrinsic predictions (albedo, normal, and depth)
and compare print predictions to ground-truth shoeprints on
the real-FID-val dataset in Figure 4. We see that the intrin-
sic predictions are visually pleasing and the predicted print
closely resembles the ground-truth shoeprint.

2.2. Comparison with RIN

RIN [9] learns from unlabeled real images using intrinsic
image decomposition. It breaks down images into albedo,
normal and light. We integrate their normal predictions to
obtain a depth prediction using the well-established Frankot
Chellappa algorithm [4]. Thresholding this depth prediction
gives us the shoeprint prediction which we compare to the
ground-truth shoeprint. In Figure 5, we compare the albedo,
normal, depth, and shoeprint predictions of RIN on real-val
with that of ShoeRinsics. We find that RIN performs poorly
on real shoes, presumably because it does not explicitly per-
form domain adaptation. Even though our focus is on the
depth prediction, our albedo and normal predictions visu-
ally look better than the predictions made by RIN. Albedo
predictions from RIN retain much of the shape information.
More importantly, noisy normal predictions from RIN inte-
grate to give low quality depth predictions and thus unsatis-
factory shoeprint predictions.

Table 1. Comparison of Intersection over Union (IoU) values
achieved by ShoeRinsics and related work on each example in
real-val. The best IoU per shoe example is written in bold and
the second-best is underlined. We can see that ShoeRinsics w/ aug
is the clear winner while ShoeRinsics is the second-best.
Shoe ID RIN ADDA UDAB CyCADA ShoeRinsics ShoeRinsics

[9] [10] [6] [7] w/ aug

0001-L 25.7 29.9 34.1 38.8 41.4 43.5
0001-R 24.2 22.8 29.0 33.0 34.3 36.8
0002-L 27.8 29.3 27.8 35.5 29.6 32.4
0002-R 26.4 28.8 28.5 36.9 33.7 35.0
0003-L 20.3 24.5 30.2 32.3 37.7 37.9
0003-R 21.4 22.7 25.8 28.7 33.0 33.7
0004-L 26.3 31.0 31.0 38.0 39.6 39.7
0004-R 23.3 28.5 30.1 32.6 37.5 35.9
0005-L 29.2 50.4 56.0 59.2 60.5 59.9
0005-R 27.1 54.3 60.0 56.6 62.4 60.6
0006-L 31.5 36.2 36.3 37.7 42.2 43.2
0006-R 30.0 34.7 36.0 38.5 38.0 40.4
0007-L 19.6 19.3 19.4 17.1 22.8 63.3
0007-R 23.1 24.0 24.0 22.6 32.5 42.4
0009-L 48.8 48.8 48.9 58.4 55.8 49.7
0009-R 47.3 50.5 48.9 55.6 56.1 47.9
0010-L 52.5 56.2 54.8 56.4 66.6 61.0
0010-R 46.8 49.4 46.5 53.5 53.2 52.9
0011-L 22.4 24.6 25.0 25.0 25.0 25.1
0011-R 25.7 28.9 28.2 28.9 28.5 28.8
0012-L 32.1 77.5 68.2 75.8 76.2 83.3
0012-R 30.5 72.3 69.6 72.5 69.1 76.9
0013-L 24.2 35.7 31.7 31.5 31.2 32.8
0013-R 27.5 40.9 36.6 38.2 37.9 39.0
0014-L 13.6 23.9 21.2 18.8 27.7 31.4
0014-R 15.3 29.4 29.0 22.1 32.4 37.8
0015-L 24.9 36.8 29.8 35.0 35.3 34.4
0015-R 27.4 45.5 41.1 41.8 53.1 53.2
0016-L 21.7 63.4 61.1 66.0 63.9 68.6
0016-R 21.4 61.3 60.5 65.3 63.6 67.8
0017-L 24.8 47.6 47.3 56.3 55.3 57.1
0017-R 26.4 47.8 54.2 60.2 59.2 57.3
0018-L 34.8 35.3 37.3 46.4 51.8 50.6
0018-R 37.9 38.6 38.0 48.9 54.1 52.8
0019-L 66.4 69.2 72.0 73.5 71.4 75.4
0019-R 66.1 68.7 73.2 75.2 72.4 76.0

Average 30.4 41.4 41.4 44.8 46.8 49.0

3. Further Details of Quantitative Analysis
We compare methods using our defined metric based on

Intersection over Union (IoU). We analyse the IoU values
for each of the shoe examples in real-val (Table 1) and real-
FID-val (Table 2) to further demonstrate that ShoeRinsics
outperforms the state-of-the-art domain adaptation and in-
trinsic image decomposition methods. We can see from the
Tables that ShoeRinsics w/ aug performs the best, followed
by ShoeRinsics in the second position.

4. Synthetic Data Preparation
To train our model, we need shoe-sole images with

paired ground-truth albedo, depth, normal and light infor-
mation. Publicly available datasets that include shoe objects
(among other categories) [1] either do not focus on the shoe-
sole and/or do not provide full decomposition into shape,
albedo, and lighting. Thus, we introduce our own synthetic
dataset, syn-train. For this purpose, we synthesize depth
maps, albedo maps, and lighting environments. We observe



Table 2. Comparison of Intersection over Union (IoU) values
achieved by ShoeRinsics and related work on each example in real-
FID-val. The best IoU per shoe example is written in bold and the
second-best is underlined. We can see that ShoeRinsics w/ aug is
the clear winner while ShoeRinsics is the second-best.
Shoe ID RIN ADDA UDAB CyCADA ShoeRinsics ShoeRinsics

[9] [10] [6] [7] w/ aug

1 33.0 28.5 28.5 30.1 31.8 32.6
3 18.8 18.8 26.7 35.9 33.7 33.4
4 20.3 21.6 27.7 29.2 27.9 29.7
5 23.8 24.1 26.9 28.3 29.9 29.5
8 11.9 14.4 18.3 21.4 19.3 20.7
9 21.0 20.6 27.3 31.5 31.8 32.3
10 15.8 21.5 16.4 23.8 22.2 22.7
11 25.5 32.1 34.3 34.0 35.1 36.5
12 30.7 29.5 27.7 31.5 32.5 32.4
13 33.3 30.1 32.1 34.0 33.2 34.4
16 28.9 30.6 37.7 52.4 51.7 51.9
17 24.8 22.5 33.0 35.9 29.9 29.6
23 28.3 29.0 30.7 32.8 31.0 31.9
32 36.0 43.0 42.6 47.0 46.3 46.5
33 28.3 28.3 28.0 27.3 29.4 30.0
35 34.3 40.5 40.1 40.6 40.6 41.2
45 31.2 30.8 33.3 32.8 36.9 37.2
47 24.8 24.1 24.0 24.0 24.9 24.9
53 11.7 11.8 11.7 12.1 13.7 13.1
54 22.0 22.0 22.0 22.1 29.1 29.0
55 30.6 28.7 29.4 30.1 31.6 31.8
56 19.0 19.3 19.2 19.1 19.0 19.0
62 33.6 33.9 36.3 36.8 38.1 38.1
72 28.2 28.1 28.2 29.0 28.2 28.2
74 32.8 34.1 35.5 34.7 36.3 36.8
82 44.2 36.8 41.3 45.5 45.3 45.7
1040 42.0 37.8 40.3 45.4 46.0 47.1
1041 27.6 36.7 35.5 35.3 38.0 38.1
1044 19.5 20.7 20.6 21.5 23.9 24.3
1047 29.1 29.2 30.2 31.2 31.4 31.4
1048 23.5 27.7 28.5 28.1 28.0 28.6
1049 26.7 21.6 25.3 27.7 27.8 28.2
1050 26.4 25.4 26.4 26.1 26.5 26.4
1058 24.2 36.5 38.8 35.2 36.7 38.0
1062 19.0 21.0 23.5 25.6 29.1 28.6
1064 18.0 20.7 23.4 21.6 24.4 24.6
1071 11.7 16.5 19.2 19.8 18.3 18.3
1076 24.3 30.0 30.1 33.6 34.5 33.6
1079 26.4 28.4 29.4 29.3 31.3 31.4
1088 29.2 27.4 29.9 33.5 34.0 34.2
1095 26.8 29.7 28.7 37.7 38.1 41.4

Average 26.0 27.2 29.0 31.1 31.6 32.0

that commercial shoe tread photographs are taken under
very diffuse lighting conditions where the primary varia-
tions in surface brightness are driven by global illumination
effects rather than surface normal orientation (e.g., grooves
appear darker). This necessitates the use of a physically-
based rendering engine [8] rather than simple local shading
models. We discuss details of depth map generation in Sec-
tion 4.1 and visualize the different light environment maps
in Section 4.2

4.1. Depth Map Generation

We use an existing shoeprint dataset [11] collected in
a controlled lab environment. Sample shoeprints are dis-
played in Fig. 6. We convert the 2D shoeprints to 3D depth
maps by adding fake depth values to each point on the print.
We generate 10-15 different depth maps from each of the

Figure 6. Examples from an existing shoeprint dataset [11]. We
use these prints as a starting point for synthetic depth map gener-
ation. Note that even though these are shoeprints collected under
a controlled lab environment, the images are still quite noisy. This
necessitates some preprocessing before these can be used for syn-
thetic depth map generation.

387 shoeprints available in [11]. Fig. 7 highlights major
steps in depth map generation from shoeprint images. De-
tails of depth map generation is provided below.

Removing noise. Raw shoeprint data is noisy (as shown
in Fig 6). We employ two tricks to filter noise. First,
we compute a mask for the shoeprint to remove notes and
dirt in the background from consideration. Given that the
shoeprints are orange colored and the background does not
contain any of that color, we determine the mask using the
concave hull of the orange colored regions. Second, we fil-
ter noise by applying a Gaussian blur followed by a sigmoid
function on the gray-scale shoeprint.

Adding a realistic touch. At this stage, our depth map
mainly consists of the two extreme values representing con-
tact and non-contact surfaces. To incorporate some texture,
we add a moderated amount of high frequency details (ob-
tained from subtracting the blurred depth from the origi-
nal gray-scale shoeprint). Next, we optionally add slanted
bevels to our depth map to make the tread blocks look more
natural. We further add a local curvature to the non-contact
surfaces to give them some dimension. Essentially, we
square the euclidean distance transform of the depth image
and add the smoothed out result to our depth map. Finally,
we also add a global curvature along the edge of the shoe-
tread to attain the natural upward curvature that is common
in many shoes.

4.2. Visualization of Light Environments

We display the different light environments in our syn-
thetic dataset (syn-train) in Figure 8 and also provide a
video to better visualize the lighting effects. We have a total
of 17 different light environments in our dataset. One con-
sists of diffuse white light. Eight light configurations con-
sist of a white light bulb providing directional light (from



(a) raw shoeprint (c) blur + sigmoid(b) mask (d) high-frequency 
textures

(e) slanted 
bevels

(f) local curvature of 
non-contact surface

(g) global curvature 
of shoe-tread

Figure 7. We illustrate major steps in depth map generation with an example. We first filter noise in a shoeprint image (a) by masking
out the background (b) and applying a Gaussian blur followed by a sigmoid function (c) on the shoeprint image. Then, we add in some
moderated amount high frequency details from the shoeprint image as textures (d). To make our depth maps more realistic, we optionally
add slanted bevels (e), local curvatures for non-contact surfaces (f), and a global curvature along the edge of the shoe-tread (g).

8 different directions) in addition to the diffuse white light.
The other eight light configurations consists of two white
light bulbs at a 120◦ angle to each other in addition to the
diffuse white light. For each light configuration, we visu-
alize a shiny sphere in place of the shoe demonstrating the
light placements. Additionally, we render an example syn-
thetic shoe under all the different light conditions to show
the effect of each of them. We see different light environ-
ments create different shadows on on the shoe-tread blocks.

5. Real Data Preparation for Evaluation

To quantitatively evaluate and compare methods, cre-
ate real-val which consists of paired shoe-tread images and
ground-truth prints for real shoes.

Photographing shoe-treads. Real-val contains new-
athlectic, used-athletic, and new-formal shoes. The new
shoes are collected from thrift stores which often sell new
or very lightly used shoes. The used shoes are worn-out
athletic shoes donated by volunteers. We first clean all the
shoe-treads with soap and water and let them dry. Next,
we photograph the shoe-treads in a brightly lit environment
similar to that of a professional photography setting. We put
together 5 square light panels to create a light box and place
the shoe on a holder inside the light box. We also illuminate
the shoes using a ring light on top.

Preparing ground-truth shoeprint. After photograph-
ing the shoes we proceed to collecting their prints. We use
a process called block printing technique which is widely
used in forensics to collect lab shoeprint impressions [2].
With the shoe resting on the holder, we paint the shoe-
tread with a thin layer of relief ink using a roller. Forgoing

the roller and simply using a paint brush would cause ink
blobs to get stuck in the nooks and crannies of the shoe-
tread leading to blotchy prints. While the ink is still wet,
we quickly press a slightly absorbent white paper onto the
shoe-tread using a roller. The use of the roller distributes
pressure throughout the paper and thus produces more uni-
form prints. We collect 2-3 sets of prints for each shoe, each
time painting the shoe with a new layer of ink. Notice how
these individual prints are not identical and contain areas of
uneven coverage. To get a smoother result, we align all the
prints to the shoe-tread image (using thin-plate spline [3]
and point correspondences between the shoe-tread image
and the collected prints) and average them. The average
is a more complete and evenly colored print. Finally, the
average print is thresholded to get our binary ground-truth
shoeprint.

6. Further Implementation Details

Decomposer F . Our decomposer consists of a classic
encoder-decoder structure with skip connections. We use
separate decoders for albedo, normal, depth, and light pre-
dictions. All of the encoded input is passed to each of these
decoders. The light decoder consists of residual blocks fol-
lowed by a final convolution layer which outputs 17 num-
bers representing the probability of predicting the 17 light
types in our synthetic training dataset. We use the output of
the second last layer of the albedo, normal, and depth de-
coder as the corresponding features. For light features, we
use the 17 light probabilities.

Renderer R. The renderer has a mirrored structure as
the decomposer. It has separate encoders for albedo, depth,



light rendered shoe light rendered shoe

Figure 8. Visualization of the 17 different light types in our synthetic dataset (syn-train). We show a shiny sphere representing the light in
the environment and a shoe rendered under that light condition. Our light environments consist of diffuse white light in addition to 0 to
2 light bulbs for directional light. Different light sources produce different shadows on the shoe-tread blocks. Please refer to the attached
video for a better visualization.



normal, and light. The light encoder takes in a one-hot array
representing the light configuration. The encoded informa-
tion from each of the encoders is concatenated and passed to
the decoder which predicts the synthetic or real shoe-tread
image.

Connecting the decomposer and renderer. When
passing decomposer outputs to the renderer in our main
pipeline, we ensure that the decomposer outputs look simi-
lar to the synthetic albedo, depth, normal, and light used to
train the renderer. We set the background (i.e., parts outside
the shoe-tread) pixel values to 1 in the albedo, depth, and
normal predictions. We also use the Hard-Gumble trick to
represent the light predictions as one-hot vectors instead of
fractional probabilities for the renderer. This ensures that a
path exists for gradient back-propagation through the light
decoder while providing a one-hot representation for the
light probabilities.

Image translators GS→R and GR→S . We use a ResNet
backbone for the image translators. The two generators
have the exact same structure. They consist of 2 convolu-
tion layers with stride 2, followed by 9 residual blocks, and
finally 2 convolution layers coupled with nearest 2D upsam-
pling layers with a scale factor of 2. The convolution layers
and residual blocks in the generators are interspersed with
batch normalization and the leakyReLU activation function.

Image discriminators DS and DR. The discriminators
used to learn image translation are PatchGANs and consist
of 4 convolution layers with stride 2 followed by 2 convo-
lution layers with stride 1. Similar to the image transla-
tors, the discriminators also have batch normalization and
the leakyReLU activation function interspersed among the
convolution layers and residual blocks.

Feature discriminator Dfeat. The discriminator for
feature alignment takes in the concatenation of the albedo,
normal, and depth features as one input, and the light fea-
tures as a second input. These features are processed in two
separate branches and the results are concatenated in the fi-
nal output. Each of these branches consist of 3 convolution
layers. The branch for the albedo, normal, and depth fea-
tures uses a kernel size of 3 (to encode some context), while
the branch for light features use a kernel size of 1.

7. Discussion on the Pseudo Albedo
We provide pseudo supervision on the albedo prediction

of real images. Fig. 9 shows examples of pseudo albedo
and the albedo predictions made by ShoeRinsics on real
shoe-tread images. The following is a discussion on pseudo
albedo generation and how pseudo albedo differs from pre-
dicted albedo.

7.1. Pseudo Albedo Generation

Creating pseudo albedo segments. We first group the
pixels in the real image using the mean-shift algorithm [5].

pred. albedo pseudo albedoimage

Figure 9. Visualization of difference between predicted albedo and
pseudo albedo. Given that the albedo for shoe-treads consists
mostly of piece-wise constant segments, we use the mean shift
clustering algorithm [5] to determine pseudo albedo. ShoeRin-
sics learns to predict albedo for real shoe-treads using the psuedo
albedo as ground-truth. We do not use pseudo albedo directly
instead of the albedo prediction because it is not perfect ground
truth and contains deviating segment boundaries (row 1), over-
segmentation (row 2), and incorrect albedo labels for segments
(row 3). Our ShoeRinsics learns to fix these errors.

To generate the pseudo albedo labels, we work with the
LAB color space since it is easier to distinguish hue (A and
B) from brightness (L) in this color space. Additionally,
to ensure that shading does not interfere with pixel group-
ing, we scale the L channel by a factor of 0.15. Note that
ignoring L altogether would make it difficult to distinguish
between black and white. It turns out that we do not need
to work on full resolution images for pixel grouping. So,
we first downsize our real-shoe images to 67 × 150 for
faster computation. After running mean-shift on the result-
ing shoe-tread pixels, we get an initial segmentation of the
pixels in the real image. We define the color of each seg-
ment as the average color across that segment.

Refining pseudo albedo segments. The initial segmen-
tation is very grainy as expected. Thus, we proceed to iter-
atively refine the segments for a maximum of 10 iterations.
For each iteration we merge ‘nearby’ segments and update
the color of the segments to reflect the segment updates.
To merge segments, we find segments which are small in
size and close to another segment both physically (share
segment boundary) and numerically (have similar segment
color). After merging segments, we update the color of the
resulting segment as the average color across all the pixels
in the new segment. We break the iterative refinement loop



when we reach an iteration where the segmentation does not
receive any updates or when the maximum iteration count
(10) has been reached. Since this is a time-consuming pro-
cess, we predetermine the pseudo albedo for all real shoes
and save them to be used directly during training.

7.2. Comparing Pseudo Albedo to Predicted Albedo

It may seem counter-intuitive to learn to predict albedo
when we can simply determine the corresponding ground-
truth pseudo albedo. However, as we can see in Fig. 9,
pseudo albedo is only approximate and can contain deviat-
ing segment boundaries (row 1), over-segmentation (row 2),
and incorrect albedo labels for segments (row 3). ShoeRin-
sics learns to fix these errors when trained using pseudo
albedo as ground-truth.

References
[1] Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jian-

ing Wei, and Matthias Grundmann. Objectron: A large
scale dataset of object-centric videos in the wild with pose
annotations. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7822–
7831, 2021.

[2] William J Bodziak. Footwear impression evidence: detec-
tion, recovery, and examination. CRC Press, 2017.

[3] Jean Duchon. Splines minimizing rotation-invariant semi-
norms in sobolev spaces. In Constructive theory of functions
of several variables, pages 85–100. Springer, 1977.

[4] Robert T. Frankot and Rama Chellappa. A method for en-
forcing integrability in shape from shading algorithms. IEEE
Transactions on pattern analysis and machine intelligence,
10(4):439–451, 1988.

[5] Keinosuke Fukunaga and Larry Hostetler. The estimation of
the gradient of a density function, with applications in pat-
tern recognition. IEEE Transactions on information theory,
21(1):32–40, 1975.

[6] Yaroslav Ganin and Victor Lempitsky. Unsupervised do-
main adaptation by backpropagation. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceed-
ings of Machine Learning Research, pages 1180–1189, Lille,
France, 07–09 Jul 2015. PMLR.

[7] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.
CyCADA: Cycle-consistent adversarial domain adaptation.
In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
pages 1989–1998. PMLR, 10–15 Jul 2018.

[8] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org.

[9] Michael Janner, Jiajun Wu, Tejas D. Kulkarni, Ilker Yildirim,
and Joshua B. Tenenbaum. Self-supervised intrinsic im-
age decomposition. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Sys-

tems, NIPS’17, page 5938–5948, Red Hook, NY, USA,
2017. Curran Associates Inc.

[10] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Dar-
rell. Adversarial discriminative domain adaptation. In 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2962–2971, 2017.

[11] Yoram Yekutieli, Yaron Shor, Sarena Wiesner, and Tsadok
Tsach. Expert assisting computerized system for evaluating
the degree of certainty in 2d shoeprints. The US Department
of Justice: Washington, DC, USA, 2012.


