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Object Detectors

1. You Only Look Once (YOLO) Object Detec-
tor

In this paper, we focus on the state-of-the-art one-stage
object detector YOLO, first introduced by [4]. YOLO’s ar-
chitecture consists of two parts: a convolution-based back-
bone (referred to as Darknet-19) used for feature extraction,
which is followed by a grid-based detection head used to
predict bounding boxes and their associated labels.

In YOLOv2 [5] the authors argued that predicting the
offset from predefined anchor boxes [7] makes it easier for
the network to learn.

Later, YOLOv3 [6] included multiple improvements
to the architecture: (a) replacing the old backbone with
a “deeper” network (referred to as Darknet-53) which
contains residual connections [2], and (b) using multi-scale
detection layers (which are referred to as detection heads)
to predict bounding boxes at three different scales, instead
of the single scale used in the first version. This architecture
design established the foundation for many of the object
detectors proposed in recent years [1, 8, 3].

YOLO’s detection layer. The last layer of each detection
head predicts a 3D tensor that encodes three parts:

• The bounding box - coordinate offsets from the anchor
box.

• The objectness score - the detector’s confidence that
the bounding box contains an object (Pr(Object)).

• The class scores - the detector’s confidence that the
bounding box contains an object of a specific class
category(Pr(Classi|Object)).

More specifically, each detection head predicts
N ×N × [3× (4 + 1 +Nc)] candidates, where N ×N is
the final feature map size, 3 is the number of anchor boxes
per cell in the feature map, 4 for the bounding box, 1 is
the objectness score, and Nc is the number of class scores.
Therefore, YOLO produces a fixed number of candidate
predictions (denoted by C) for a given image size. For ex-
ample, for an image size of 640×640 pixels, the number of
candidates is |C| = 3 · (80 ·80+40 ·40+20 ·20) = 25, 200

(one for each anchor in a specific cell in each final feature
map).

YOLO’s end-to-end detection pipeline. As explained
above, YOLO outputs a fixed number of candidate predic-
tions for a given image size. The candidates C are later fil-
tered sequentially using two conditions:

• Objectness score filtering -

F1 = {cobj score > Tconf|c ∈ C}. (1)

• Unconditional class score filtering
(Pr(Classi) = Pr(Object) · Pr(Classi|Object)) -

F2 = {cobj score ·max{cclass score i}Nc
i=0 > Tconf|c ∈ C}.

(2)

Finally, since many candidate predictions may overlap
and predict the same object, the NMS algorithm is applied
to remove multiple detections.

2. UAP Example
Figure 1 presents two UAPs trained with two different

λ1 values (for YOLOv5 model). By visually examining
the UAPs, it is possible to see that when setting λ1 = 0.6,
the attack detects areas in the natural images where objects
commonly appear in, forcing the perturbation to add candi-
dates on the image’s sides while the center of the perturbed
image remains unattacked. As opposed to this case, when
setting λ1 = 1.0, candidates are added all over the image.
This is an outcome we expected, since there are naturally
fewer objects in these areas (where we would usually find
the sky, a road, or a sidewalk in the autonomous driving
domain).

In Figure 2, we provide examples of perturbations
trained using different ϵ values.



λ1 = 0.6 λ1 = 1.0

Figure 1: Top: UAPs trained with different λ1. Bottom: perturbed images with the corresponding UAP predicted using
YOLOv5.

ϵ = 0 ϵ = 25 ϵ = 30 ϵ = 70

Figure 2: Examples of three images with the different UAPs applied with varying in ϵ values they were trained on, where
λ1 = 1.0.



3. Extended Results: Ensemble Experiment
In addition to the experiments presented in section 4.2

under the ’Ensemble learning’ subsection, we also evalu-
ate the effectiveness of our attack using the ensemble tech-
nique on two additional UAP’s configurations. The results
are reported in Table 1 and Table 2. Table 1, presents
the evaluation results of UAPs with the (λ1=0.6, λ2=10,
λ3=0.4, ϵ=30) values. Table 2 presents the evaluation re-
sults of UAPs created with the (λ1=0.8, λ2=10, λ3=0.2,
ϵ=70) values. In each table, the first UAP was trained only
on the YOLOv5s model, the second UAP was trained on
YOLOv5s and YOLOv4 and the third UAP was trained on
the three different versions of YOLO.

These results indicate that an attacker trying to perform
the attack does not need to know the type/version of the
attacked model. Instead, in order to perform a successful
attack, one UAP trained on an ensemble of models can be
generated and still be effective.

Victim Models
YOLOv3 YOLOv4 YOLOv5s

NMS time (ms) ↑ /|F (C′)| ↑ / Recall ↑
YOLOv5s 2.2 / 60 / 69% 2.2 / 40 / 55% 13 / 9000 / 77%
Ens1 2.2 / 80 / 70% 8.3 / 6300 / 72% 7.2 / 5400 / 80.5%
Ens2 8.5 / 6700 / 75.1% 8 / 6000 / 74.3% 6.9 / 5200 / 81.9%

Table 1: Average results for a UAP trained on differ-
ent model combinations and evaluated on YOLOv3,
YOLOv4, and YOLOv5. Ens1=YOLOv4+YOLOv3,
Ens2=YOLOv5+YOLOv4+YOLOv3,
configuration: : (ϵ, λ1, λ2) = (30, 0.6, 10).

Victim Models
YOLOv3 YOLOv4 YOLOv5s

NMS time (ms) ↑ /|F (C′)| ↑ / Recall ↑
YOLOv5s 2.1 / 60 / 53.4% 2.2 / 40 / 31.6% 25.8 / 16000 / 45.3%
Ens1 2.1 / 70 / 56.9% 14.7 / 10100 / 50.3% 19.8 / 12300 / 56.4%
Ens2 18.4 / 12000 / 56.7% 13.9 / 9200 / 52.1% 15.1 / 10200 / 61%

Table 2: Average results for a UAP trained on differ-
ent model combinations and evaluated on YOLOv3,
YOLOv4, and YOLOv5. Ens1=YOLOv4+YOLOv3,
Ens2=YOLOv5+YOLOv4+YOLOv3,
configuration: : (ϵ, λ1, λ2) = (70, 0.8, 10).



4. Extended Results: Target Class
In Table 3 we present evaluation results for UAPs (with

ϵ=70, λ1=1, λ2=10, λ3=0 values) created for different target
classes. It can be seen that the attack manages to create effi-
cient UAPs for different target classes (i.e., ∼ 20K objects
are passed to the NMS step).

car person bicycles
NMS time (ms) ↑ /|F (C′)| ↑ / Recall ↑

clean 2.2 / 80 / 100%
config 37.1 / 19200 / 18% 37.9 / 19500 / 10% 35.8 / 18800 / 14%

Table 3: Average results of UAPs created for three
different target classes: ’car’, ’person’ and ’bicycles’.
config: : (ϵ, λ1, λ2) = (70, 1, 10).

As mentioned in Section 4.2, the UAPs’ patterns for dif-
ferent target classes seem to consist of tiny objects that re-
semble the UAPs’ target class. UAPs for the different target
classes are presented in Figure 3.

(a) UAP created for the ’car’ target class.

(b) UAP created for the ’person’ target class.

(c) UAP created for the ’bicycle’ target class.

Figure 3: UAPs created for different target classes, with the
(ϵ, λ1, λ2) = (70, 1, 10) values.
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