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In this Supplementary, we provide additional experi-
ments for evaluating our LoopDA framework as well as ad-
ditional results obtained from our trained models.

1. Label fusion
As discussed in Sec.3.1.1 in the main paper, to ensure

that pd of the daytime domain is accurate enough for render-
ing, we fuse pd and its ground-truth label yd in each training
for fine-grained rectification via linear combination,

pd ← α · yd + (1− α) · O(argmax(pd)) (1)

where O is the one-hot operator and α is a constant value
between 0 and 1.
For better visualization, we show the fused results for dif-
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Figure 1. An illustration of the label fusion procedure to refine
pd. Different choices of α are visualized.

ferent chosen α values at early warm-up phase (See Fig. 1).
It is known to the community that a segmentation model
cannot perform exactly the same as the ground-truth labels
no matter how well they are trained. But in our case, to
better condition the network for domain adaptation towards
nighttime, we need good quality pd in daytime domain for
semantic rendering. Therefore, we use label fusion to com-
bine yd into pd for refinement. In this process, we argue that
the smallest possible value for α can be determined based
on early warm-up training phase, where the segmentation

head is only able to produce rough segmentation. Hence,
larger weight for yd is needed. We compare in Fig. 1 and ob-
serve that 0.5 is a suitable value for α. This ensures that the
refined pd perfectly overlaps with yd also in class boundary
regions. For the invalid labels (don’t care regions) in yd, we
just assign pd values to them.

2. Analysis of image domain transfer
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Figure 2. Examples of image domain translation in LoopDA taken
from the outputs of our Decn and Decd.

In our ablation study of the main paper, we demonstrate
that the inter-domain outer loop plays a crucial role for the
performance improvement in the warm-up stage. Without
the outer loop, the performance drops from 29.5 to 22.0
mIoU. The reason is that our image translation modules en-
force the encoder to treat input images and their domain
transferred version equally, thus learning domain agnostic
representation from the input data. As Fig. 2 shows, this bi-
directional alignment of image translation enriches the data
diversity at input level. From the perspective of xd )n, it
mimics nighttime appearance regarding the characteristics
such as style and illumination, but maintains the structural
contents of xd. In terms of xn ) d, it manages to recover
low-light objects from xn for better illumination condition



and resembles daytime appearances. Thus, the segmenta-
tion network is trained to be more robust across day and
night domains.
Image translation between day and night is a challenging
task, therefore, an image translator producing high quality
outputs can better assist the downstream tasks such as se-
mantic segmentation. For verification of our proposal, we
also have experimented on the image translation results with
and without semantic rendering layers, as well as an alterna-
tive variant of semantic rendering, SPADE layers [4], which
are designed particularly for semantic image synthesis (See
Fig. 3).
For day to night image translation, our proposed decoder
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Figure 3. Examples of image domain translation. From (a)-(d):
inputs, image domain translation using SPADE layers, LoopDA
decoders w/o semantic rendering layers and LoopDA decoders w/
semantic rendering layers, respectively.

architecture with semantic rendering layers help preserve
daytime contents during translation while producing images
with higher fidelity. Translating from night to day in the
second row of Fig. 3, SPADE is less effective dealing with
night image translation (similar observation can be found
in [5]), and decoder without rendering layers generate sky
in building regions. However, the LoopDA decoder with
rendering layers produces the best visual quality while re-
covering the building shape. This confirms the superiority
of our decoder architecture design.

3. Additional ablative analysis
In addition to Table 3 in the main paper, in this Sup-

plementary, we conduct three extra ablative experiments
(marked in red) to provide more detailed information about
our proposed LoopDA framework. Row(iv) indicates that
sharing ground-truth between xd and xd )n substantially
enhances the learning of domain agnostic features between
daytime and nighttime domains. Excluding Ld )n

seg from
warm-up stage leads to a mIoU drop from 29.5 to 26.7.
Row(v) suggests that it is meaningful to set additional con-
straints to maintain perceptual consistency during image
translation, improving the generated image quality. If no

Table 1. Ablation study for Cityscapes )Dark Zurich adaptation
results evaluated on Dark Zurich validation set.
Phase Components mIoU ∆

W
arm

-up
stage

(i).baseline[6] on PSPNet (Ld
seg) 20.6 +0.0

(ii). no outer loop (w/o Lpercep, Ladv , Ld )n
seg , Louter) 22.0 +1.4

(iii). no inner loop (w/o Linner) 26.3 +5.7

(iv). no label sharing with xd )n (w/o Ld )n
seg ) 26.7 +6.1

(v). no perceptual consistency loss (w/o Lpercep) 27.1 +6.5

(vi). no semantic rendering layers 28.6 +8.0

(vii). LoopDA warm-up model 29.5 +8.9

ST
stage

(viii). no offline pseudo-labels (without ŷoff in L̂n
seg) 33.9 +13.3

(ix). no ‘DNA’ (without ŷDNA in L̂n
seg) 35.7 +15.1

(x). LoopDA full configuration (L̂n
seg) 37.6 +17.0

(xi). with extra distillation stage (LoopDA‡) 38.7 +18.1

Lpercep is applied for warm-up training, the model perfor-
mance decreases by 2.4 mIoU. Furthermore, in terms of
the self-training stage, as can be observed in row(viii), if
no offline pseudo-supervision is performed, the model seg-
mentation for the dynamic objects is affected, thus bring the
model accuracy from 37.6 down to 33.9 mIoU.

4. Additional details of LoopDA implementa-
tion

In supplement to the main paper, we provide additional
details of implementing our proposed LoopDA framework.
For the image decoders and discriminators, we adopt
Adam [2] optimizers with default learning rate 1.0 × 10−3

but 1.0 × 10−4 for the discriminators. We apply polyno-
mial decay policy to the learning rates. We set momentum
between 0.9 and 0.99. We follow the discriminator architec-
ture implemented in MUNIT [1], and as given in Equation
3 of the main paper, we apply LSGAN [3] adversarial loss
for more stable GAN training.
For the image reconstruction losses, we set higher weights
to the pixel locations which belongs to sobel gradients to
prevent the output images from turning blurry. And for
faster convergence, the LPIPS loss can be optionally ap-
plied to the image reconstruction process.

5. Discussion of parameter-free relighting

As [7] suggests, having a pre-processing step such as re-
lighting before sending the input data for segmentation can
help expose the challenging dark regions in nighttime data
to certain degree, thus bringing benefits to the segmentation
performance. Nevertheless, training a relighting network
will lead to extra computational complexity. Most impor-
tantly, this means that the trained relighting network must
be included into the inference phase all the time after train-
ing, which increases the inference time and is less practical.
Therefore, we have explored to look for an alternative so-
lution that also changes the illumination of the nighttime



inputs, but do not bring in trainable network parameters. To
this end, we have experimented on a parameter-free day-
time instance adaptive relighting mechanism. For incoming
training samples xd and xn (xd, xn ∈ R3×h×w) in each it-
eration, we compute their channel-wise means µd and µn

(µd, µn ∈ R3×1×1), and calculate the absolute value of
the illumination differences pixel-wisely between them, i.e.,
∆ = |µd−µn|. Then, we use this illumination difference to
relight xn element-wisely according to the following condi-

tion, xn
i,j,k =

{
xn
i,j,k +∆i, xn

i,j,k < ∆i

xn
i,j,k, xn

i,j,k ≥ ∆i

. Moreover, we

also update a global ∆′ using exponential moving average,
∆′ ← β · ∆ + (1 − β) · ∆′ where β = 0.001, which pre-
pares the relighting values at inference time. As shown in
Fig. 4, this parameter-free relighting procedure is able to
improve the visual visibility of the nighttime inputs, recov-
ering some low-light objects. Nevertheless, after including
this step into our LoopDA training, we have not yet ob-
served substantial improvement to our segmentation task.
However, we still would like to share these interesting vi-
sual observations with the community and leave them for
future investigation.
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Figure 4. Examples of daytime instance adaptive relighting for xn.

6. Additional qualitative comparison
In this section we provide more qualitative compari-

son between LoopDA and state-of-the-art methods on Dark
Zurich validation set in Fig. 5.
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Figure 5. Qualitative comparison with state-of-the-art methods for Cityscapes )Dark Zurich adaptation on Dark Zurich validation set.


